

Egocentric Vision: Exploring User-Centric Perspectives Francesco Ragusa

LIVE Group @ UNICT - <u>https://iplab.dmi.unict.it/live/</u>

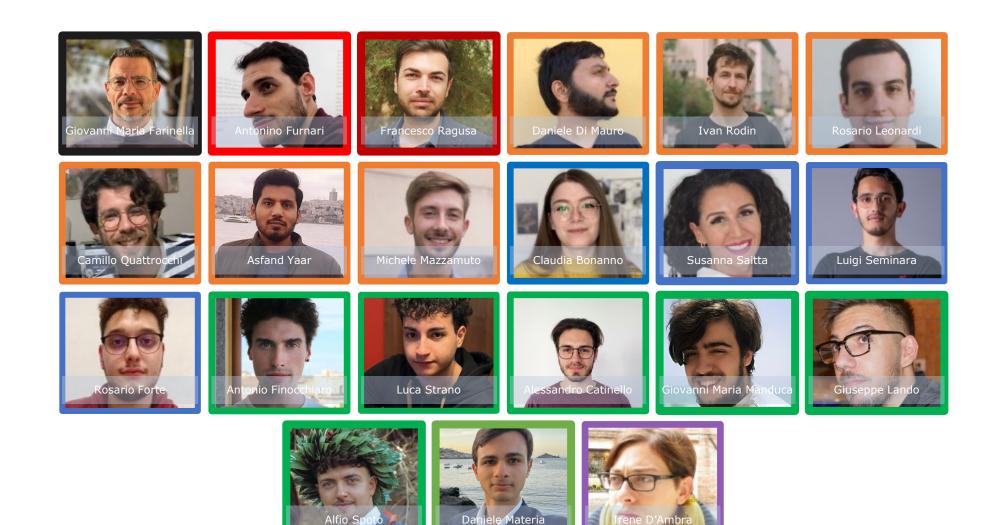
Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Porto, Portugal 26 - 28 February, 2025

Università di Catania



LIVE Group @ UNICT

http://iplab.dmi.unict.it/live

http://www.nextvisionlab.it/

21 Members 1 Full Professor 1 Assistant Professor 1 Researcher 6 Post Docs 4 PhD Students 6 Master Students 1 Bachelor Student 1 Lab Assistant

The slides of this tutorial are available online at: <u>https://francescoragusa.github.io/visigrapp2025</u>

- 1) Part I: History and motivations [14.15 15.45]
 - a) Agenda of the tutorial;
 - b) Perception and Egocentric Vision;
 - c) Seminal works in Egocentric Vision;
 - d) Differences between Third Person and First Person Vision;
 - e) First Person Vision datasets;
 - f) Wearable devices to acquire/process first person visual data;
 - g) Main research trends in First Person (Egocentric) Vision;
 - h) What's next?

Coffee Break [15.45 - 16.00]

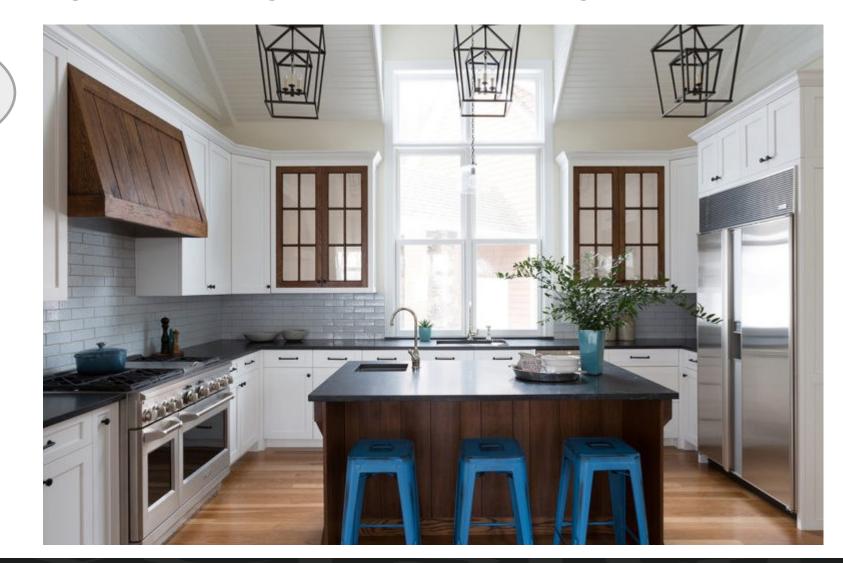
Keynote presentation: Julien Pettrè [16.00 – 17.00]

- 2) Part II: Fundamental tasks for First Person Vision systems [17.15 18.30]
 - a) Localization;
 - b) Hand/Object Detection;
 - c) Action/Activity Recognition;
 - d) Human-Object Interaction;
 - e) Anticipation;
 - f) Industrial Applications;
 - g) Conclusion.

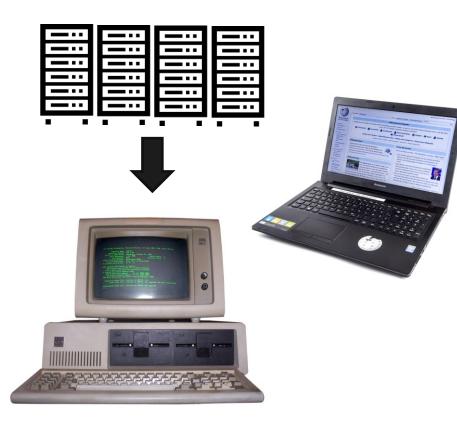
Part I

History and Motivations

Perception and Egocentric Vision



E. Corona, A. Pumarola, G. Aleny, M. N. Francesc, R. Gregory. GanHand: Predicting Human Grasp Affordances in Multi-Object Scenes, CVPR, 2020.


Computer vision enables computers to **acquire**, **process**, **analyze** and **understand** digital images, and extract of highdimensional data from the real world in order to produce numerical or symbolic information

Computer vision enables computers to **acquire**, **process**, **analyze** and **understand** digital images, and extract of highdimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions

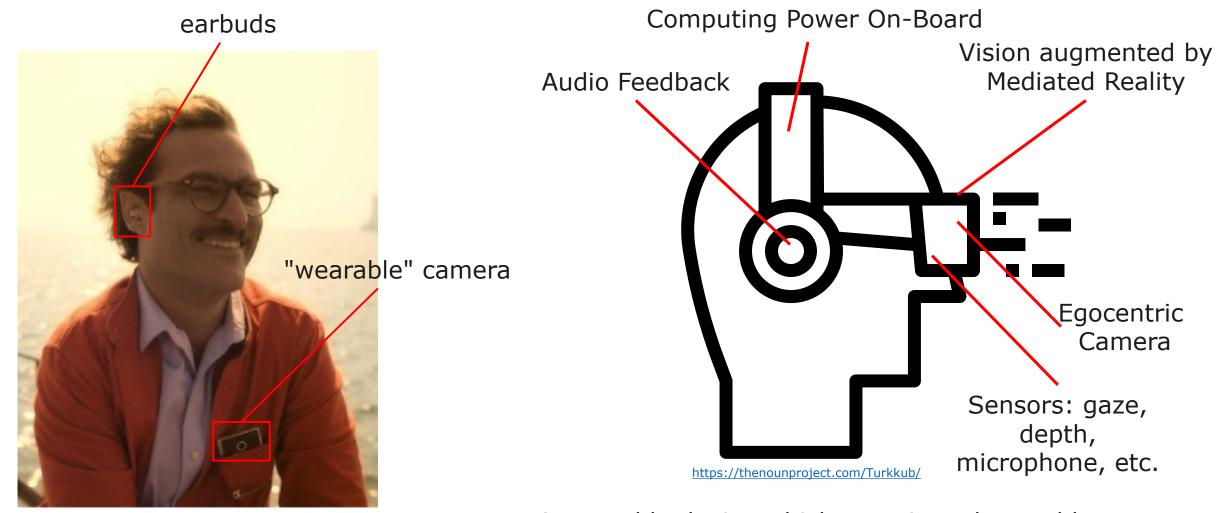
di Catania The Revolution of Personal Computing

After personal computers and smartphones, wearable devices are the third wave of computing

Personal Computers:

computing for the mass, but not mobile and not context aware dedicated access to computing – <u>Marc Pollefeys</u>, Lab Director, Microsoft Mixed Reality and AI Zurich

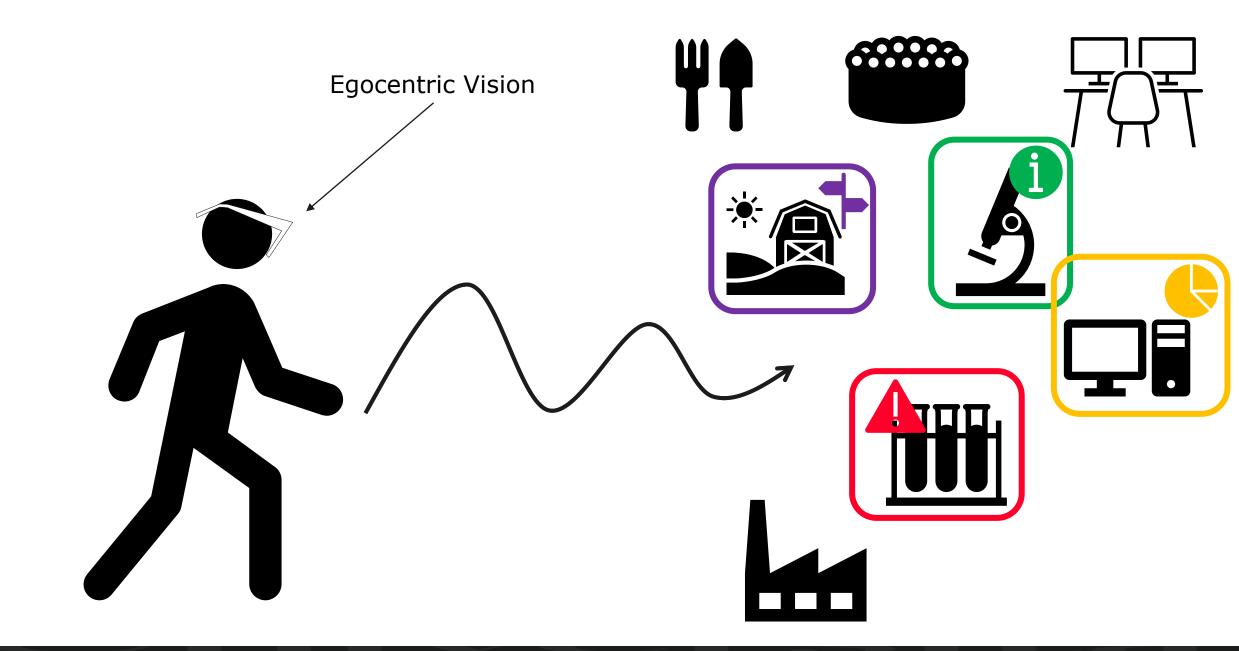
Smartphones: mobile computing is always accessible, but forces to switch between the digital and real world



Eyeworn Devices:

computing everywere with minimal switch between real and digital worlds

Università An AI-Powered Virtual Assistant



"her" 2013 movie

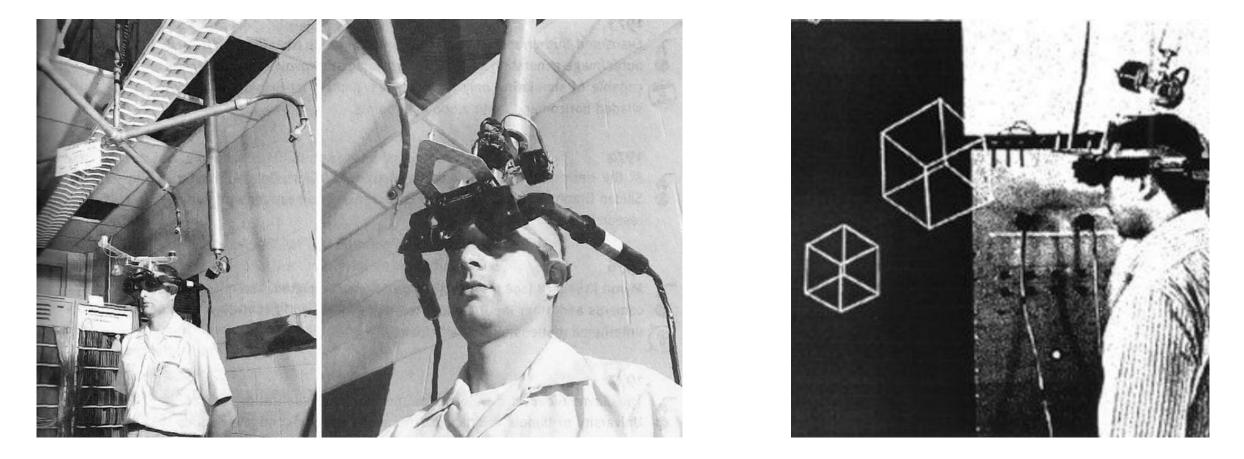
A wearable device which perceives the world from our "egocentric" point of view is perfect for implementing a virtual assistant

Università A Virtual Personal Assistant

(Egocentric) Computer Vision is Fundamental!

- ✓ Easy to setup
- ✓ Controlled Field of View
- × Doesn't always see everything
- × Not really portable

- ✓ Content is always relevant
- ✓ Intrinsically mobile
- × High variability
- × Operational constraints



Receive/Acquire Information

Università di Catania Head Mounted Display (1968)

In 1968 Ivan Sutherland invented the first "head mounted display" (HMD), a <u>stereoscopic</u> display mounted on the head of the user which allowed to show wireframe rooms.

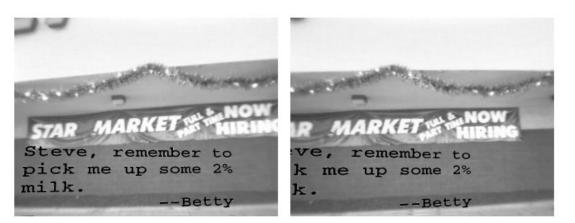
Due to its weight, the display was fixed to the ceiling with a pipe, for which it was called «sword of Damocles».

Università di Catania The Birth of Wearable Computing

Steve Mann's "wearable computer" and "reality mediator" inventions of the 1970s have evolved into what looks like ordinary eyeglasses.

In the 80s and 90s Steve Mann (PhD in Media Arts and Sciences at MIT, 1997) invented a number of wearable computers featuring video capabilities, computing capabilities, and a werable screen for feedback. Steve Mann is often referred to as «the father of wearable computing»

Università First Wearable Computing Applications



Meta-Vision

Visual Orbits

Spatialized Reminders

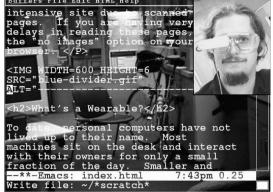
Spatialized Shopping List

Visual Filters

Steve Mann. "Compositing multiple pictures of the same scene." *Proc. IS&T Annual Meeting, 1993.* Steve Mann, "Wearable computing: a first step toward personal imaging," in *Computer*, vol. 30, no. 2, pp. 25-32, Feb. 1997.

Università di Catania MIT Media Lab in 1997

Università MIT Media Lab Seminal Works, late 1990s

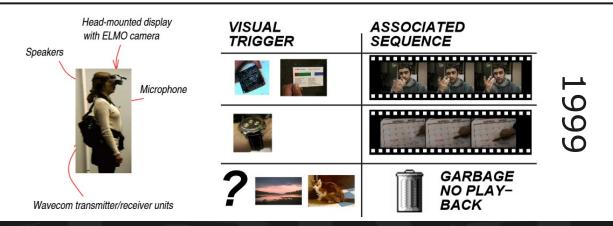

997

Augmented Reality Through Wearable Computing

Thad Starner, Steve Mann, Bradley Rhodes, Jeffrey Levine Jennifer Healey, Dana Kirsch, Roz Picard, and Alex Pentland

> The Media Laboratory Massachusetts Institute of Technology (augmented reality)

Visual Contextual Awareness in Wearable Computing

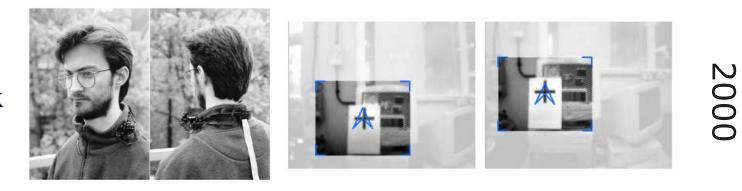

Thad StarnerBernt SchieleAlex PentlandMedia Laboratory, Massachusetts Institute of Technology

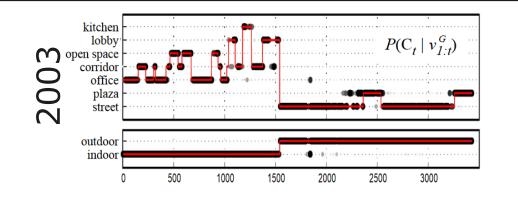
(location and task recognition)

An Interactive Computer Vision System DyPERS: Dynamic Personal Enhanced Reality System

Bernt Schiele, Nuria Oliver, Tony Jebara, and Alex Pentland Vision and Modeling Group MIT Media Laboratory, Cambridge, MA 02139, USA

(object recognition, media memories)





Wearable Visual Robots

W.W. Mayol, B. Tordoff and D.W. Murray University of Oxford, Parks Road, Oxford OX1 3PJ, UK (active vision)

Context-based vision system for place and object recognition

Antonio TorralbaKevin P. MurphyWilliam T. FreemanMark A. RubinMIT AI labMIT AI labMIT AI labLincoln LabsCambridge, MA 02139Cambridge, MA 02139Cambridge, MA 02139Lexington, MA 02420(location/object recognition)

Real-Time Localisation and Mapping with Wearable Active Vision *

Andrew J. Davison, Walterio W. Mayol and David W. Murray Robotics Research Group Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK (active vision, SLAM)

2003

Wearable Hand Activity Recognition for Event SummarizationW.W. MayolD.W. MurrayDepartment of Computer ScienceDepartment of Engineering Science

University of Bristol University of Oxford (hand activity recognition)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

Temporal Segmentation and Activity Classification from First-person Sensing

Ekaterina H. Spriggs, Fernando De La Torre, Martial Hebert Carnegie Mellon University. (activity classification)

Figure-Ground Segmentation Improves Handled Object Recognition in Egocentric Video

Xiaofeng Ren Intel Labs Seattle 1100 NE 45th Street, Seattle, WA 98105 (handheld of

RenChunhui GuSeattleUniversity of California at BerkeleySeattle, WA 98105Berkeley, CA 94720(handheld object recognition)

A COMMON HARDWARE PLATFORM WAS MISSING!

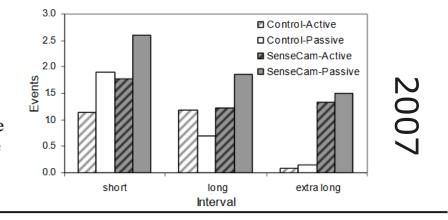
Università di Catania Microsoft SenseCam, 2004

"A day in Rome"

https://www.microsoft.com/en-us/research/project/sensecam/

- SenseCam is a wearable camera that takes photos automatically;
- Originally conceived as a «personal blackbox» accident recorder;
- Used in the MyLifeBits project, inspired by Bush's Memex;
- Inspired a series of conferences and many research papers.

Bell, Gordon, and Jim Gemmell. Your life, uploaded: The digital way to better memory, health, and productivity. Penguin, 2010.



Do Life-Logging Technologies Support Memory for the Past? An Experimental Study Using SenseCam

Abigail Sellen, Andrew Fogg, Mike Aitken*, Steve Hodges, Carsten Rother and Ken WoodMicrosoft Research Cambridge*Behavioural & Clinical Neuroscience Institute7 JJ Thomson Ave, Cambridge, UK, CB3 0FBDept. of Psychology, University of Cambridge

(health, memory augmentation)

(b) Having dinner

MyPlaces: Detecting Important Settings in a Visual Diary

Michael Blighe and Noel E. O'Connor Centre for Digital Video Processing, Adaptive Information Cluster Dublin City University, Ireland {blighem, oconnorn}@eeng.dcu.ie

(lifelogging, place recognition)

Constructing a SenseCam Visual Diary as a Media Process

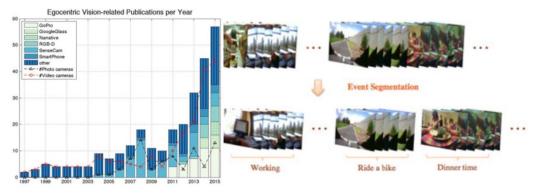
Hyowon Lee, Alan F. Smeaton, Noel O'Connor, Gareth Jones, Michael Blighe, Daragh Byrne, Aiden Doherty, and Cathal Gurrin Centre for Digital Video Processing & Adaptive Information Cluster, Dublin City University

(lifelogging, multimedia retrieval)

http://getnarrative.com/

Multi-face tracking by extended bag-of-tracklets in egocentric photo-streams

Maedeh Aghaei^{a,*}, Mariella Dimiccoli^{a,b}, Petia Radeva^{a,b} (lifelogging, face tracking)



SR-clustering: Semantic regularized clustering for egocentric photo streams segmentation

Mariella Dimiccoli^{a,c,1,*}, Marc Bolaños^{a,1,*}, Estefania Talavera^{a,b}, Maedeh Aghaei^a, Stavri G. Nikolov^d, Petia Radeva^{a,c,*}

(lifelogging, event segmentation)

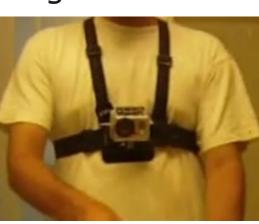
Toward Storytelling From Visual Lifelogging: An Overview

2017

Marc Bolaños, Mariella Dimiccoli, and Petia Radeva

(lifelogging, survey)

Università What About Video?



different wearing modalities

head-mounted

chest-mounted

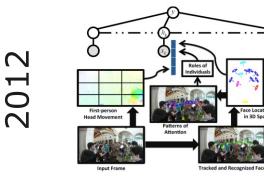
wrist-mounted

helmet-mounted

https://www.youtube.com/watch?v=D4iU-EOJYK8

201

201


ω

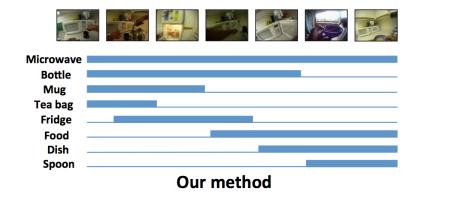
360p* 💭 🗗 靠

Fast Unsupervised Ego-Action Learning for First-Person Sports Videos

Kris M. Kitani UEC Tokyo Tokyo, Japan Takahiro Okabe, Yoichi Sato University of Tokyo Tokyo, Japan Akihiro Sugimoto National Institute of Informatics Tokyo, Japan

(unsupervised action recognition, video indexing)

Social Interactions: A First-Person Perspective


go-action categor

Alireza Fathi¹, Jessica K. Hodgins^{2,3}, James M. Rehg¹ (detection and recognition of social interactions)

Story-Driven Summarization for Egocentric Video

Zheng Lu and Kristen Grauman University of Texas at Austin

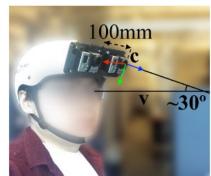
(egocentric video sumarization)

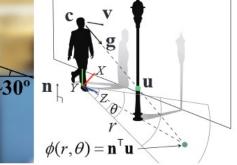
Antonino Furnari, Giovanni Maria Farinella, Senior Member, IEEE, and Sebastiano Battiato, Senior Member, IEEE

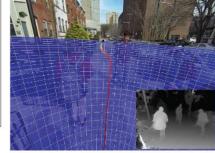
(localization, indexing, context-aware computing)

Egocentric Future Localization

car


* reject


(a) browsable temporally segmented video

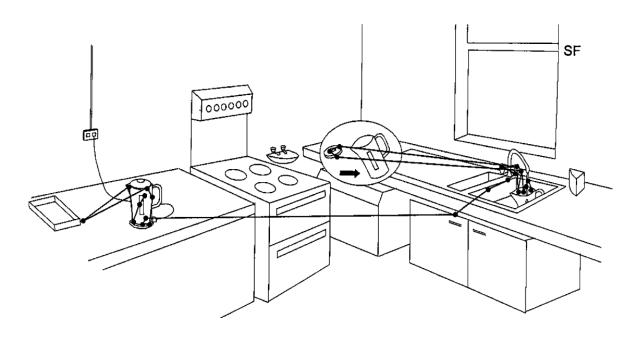

car

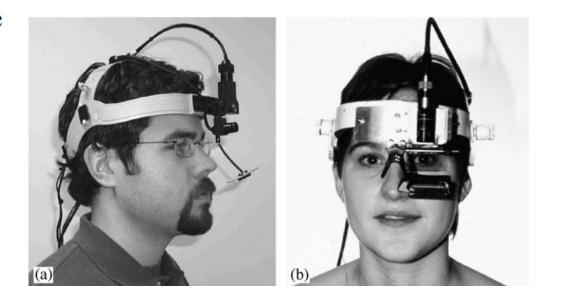
Hyun Soo Park Jyh-Jing Hwang Yedong Niu Jianbo Shi

(future localization, navigation)

ົດ

(c) Egocentric RGBD image


(a) Ego-stereo cameras


(b) Geometry

Università di Catania Gaze Trackers

Eye movements and the control of actions in everyday life

Michael F. Land

Prototype by Land (1993)

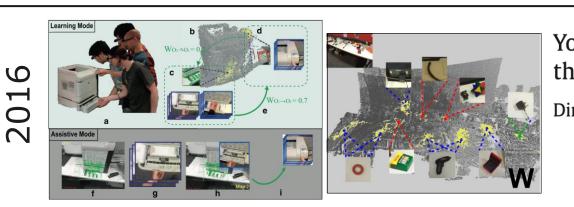
Gaze is important in Egocentric Vision!

Tobii Pro Glasses 2 (2014) Mic

Microsoft HoloLens 2 (2016)

Mobile Eye-XG (2013) Pupil Eye Trackers (2014 -)

2012


Object Segmentation

Stirring Eggs

Action Recognition

Learning to Predict Gaze in Egocentric Video

Yin Li, Alireza Fathi, James M. Rehg (gaze prediciton, action recognition)

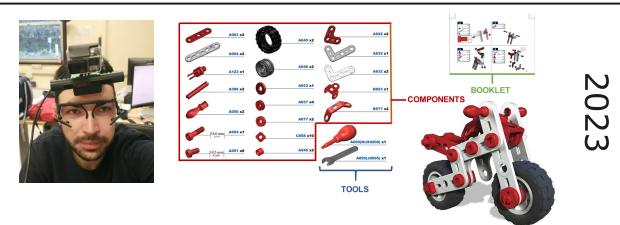
You-Do, I-Learn: Egocentric unsupervised discovery of objects and their modes of interaction towards video-based guidance

Gaze Prediction (Red) vs. Eye Tracking (Green)

Dima Damen*, Teesid Leelasawassuk, Walterio Mayol-Cuevas

Temporal Modelin

Random Forests


Head/Hand Motior

and Location/Pose

(object usage discovery, assistance)

MECCANO: A multimodal egocentric dataset for humans behavior understanding in the industrial-like domain Francesco Ragusa^{*}, Antonino Furnari, Giovanni Maria Farinella

(gaze prediciton, procedural video)


Health, assistive technologies

https://www.orcam.com/

Università di Catania OrCam MyEye, since 2015

https://www.orcam.com/

Microsoft HoloLens, since 2016 – HoloLens2 in 2020

Mixed Reality

https://www.microsoft.com/hololens

https://youtu.be/eqFqtAJMtYE

Università di Catania Microsoft HoloLens2 – Towards Industrial Applications

HoloLens 2

An ergonomic, untethered self-contained holographic device with enterprise-ready applications to increase user accuracy and output.

HoloLens 2 Industrial Edition

A HoloLens 2 that is designed and tested to support regulated environments such as clean rooms and hazardous locations.

Trimble XR10 with HoloLens 2

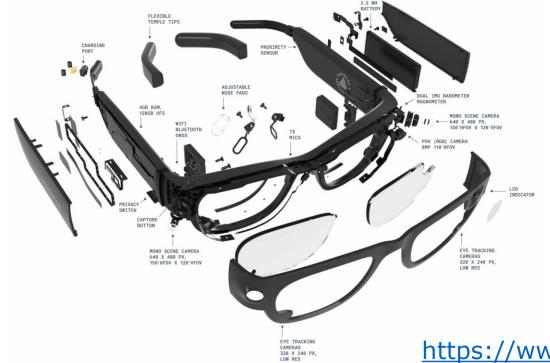
A hardhat-integrated HoloLens 2 that is purposebuilt for personnel in dirty, loud, and safetycontrolled work site environments.

\$5,199

\$3,500

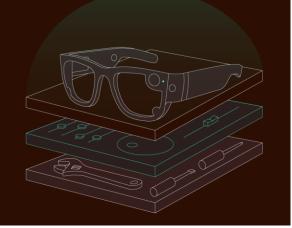
\$4,950

https://www.microsoft.com/en-us/hololens/buy



https://www.magicleap.com/magic-leap-2

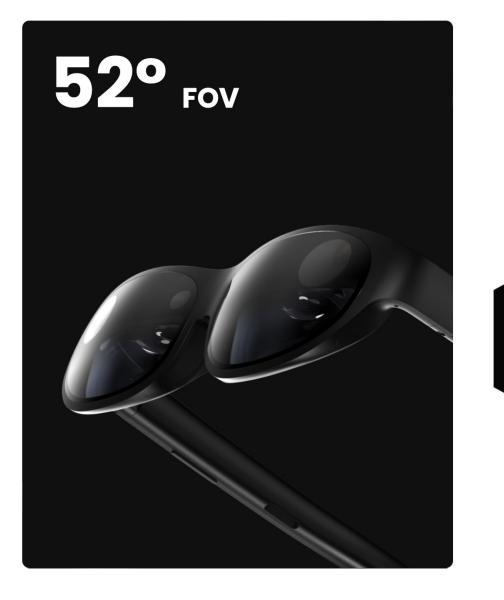
Università di Catania Meta's Project Aria

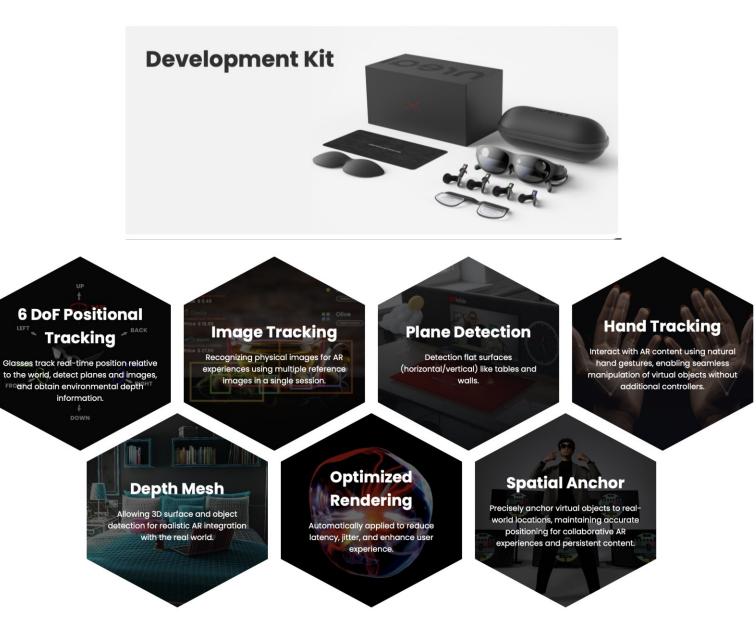


Aria Research Kit

For approved research partners, Meta offers a kit that includes Project Aria glasses and SDK, so that researchers can conduct independent studies and help shape the future of AR.

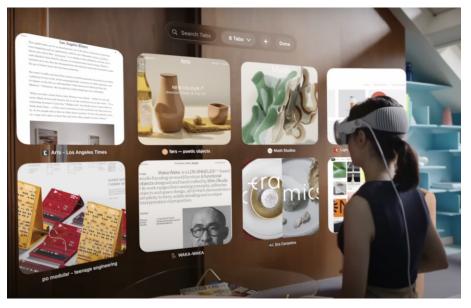
ightarrow learn more about partnering with project aria


LIVE



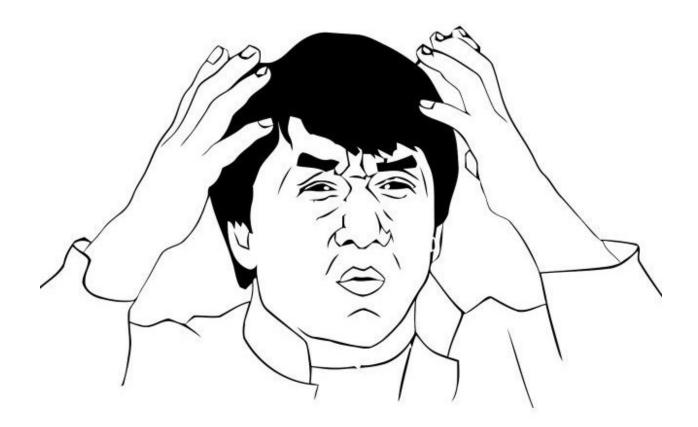
https://www.projectaria.com

https://www.xreal.com/



Università di Catania Apple Vision Pro

Vision Pro



https://www.apple.com/apple-vision-pro/

Too Many Devices?

towards standardization...

Unified API supported by many AR and VR devices

XR APPLICATIONS

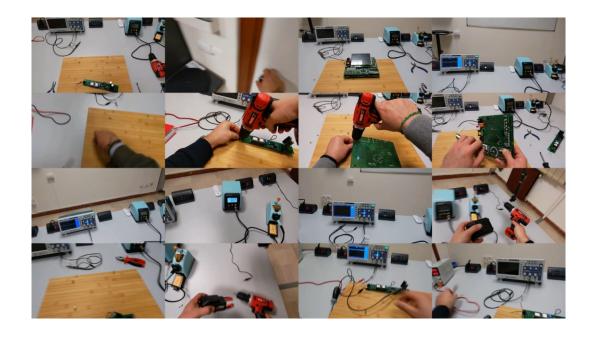
Head & Hand Pose Information Controller Input State Display Configuration

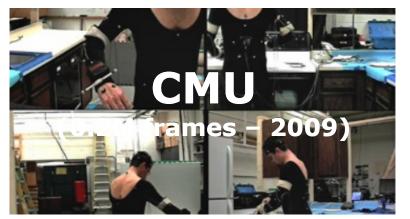
Image(s) to Display Audio Haptic Responses

XR PLATFORMS & DEVICES

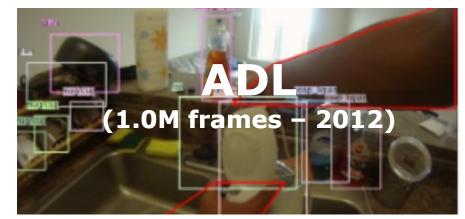
https://www.khronos.org/openxr/

Università di Catania Circa 2017 – most of the discussion still in workshops





Digital Information



http://www.cs.cmu.edu/~espriggs/ cmu-mmac/annotations/

http://www.cbi.gatech.edu/fpv/

https://www.csee.umbc.edu/~hpirsiav/ papers/ADLdataset/

https://allenai.org/plato/charades/

http://www.cbi.gatech.edu/fpv/

Università The EPIC series

Dima Damen¹(0000-0001-8804-6238], Hazel Doughty¹, Giovanni Maria Farinella², Sanja Fidler³, Antonino Furnari², Evangelos Kazakos¹, Davide Moltisanti¹, Jonathan Munro¹, Toby Perrett¹, Will Price¹, and Michael Wray¹

¹Uni. of Bristol, UK ²Uni. of Catania, Italy, ³Uni. of Toronto, Canada

Abstract. First-person vision is gaining interest as it offers a unique viewpoint on people's interaction with objects, their attention, and even intention. However, progress in this challenging domain has been relatively slow due to the lack of sufficiently large datasets. In this paper, we introduce EPIC-KITCHENS, a large-scale egocentric video benchmark recorded by 32 participants in their native kitchen environments. Our videos depict non-scripted daily activities: we simply asked each participant to start recording every time they entered their kitchen. Recording took place in 4 cities (in North America and Europe) by participants belonging to 10 different nationalities, resulting in highly diverse cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labelled for a total of 39.6K action segments and 454.3K object bounding boxes. Our annotation is unique in that we had the participants narrate their own videos (after recording), thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and anticipation challenges, and evaluate several baselines over two test splits. seen and unseen kitchens. Keywords: Egocentric Vision, Dataset, Benchmarks, First-Person Vision, Egocentric Object Detection, Action Recognition and Anticipation

EPIC-Kitchens 55

EPIC-SOUNDS: A Large-Scale Dataset of Actions that Sound

Jaesung Huh1*, Jacob Chalk2*, Evangelos Kazakos3, Dima Damen2, Andrew Zisserman1

¹Visual Geometry Group, Department of Engineering Science, University of Oxford, UK ²Department of Computer Science, University of Bristol, UK ³ CIIRC, Czech Technical University in Prague, Czech Republic

https://epic-kitchens.github.io/epic-sounds/

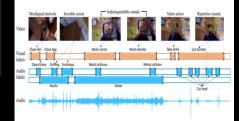


Fig. 1: Sample video with corresponding audio from EPIC-KITCHENS-100 [I]. We compare the already published visual hables with our collected EPIC-SUOLINS and/a hables. We downstrate the differences between the modifily annutations, both interprot extent and calsa leshs, highlighting livelingues terroristic temporal boundary are distinct. Infisible actione action not even in the video, har which produces distinct rounds (0-ke) - maching). Indistinguishable sounds: sounds from two distinct visual actions, but are and/bly inceptually. Silterat actions that does not have and/ble sounds (1-a-0); and visual actions, but are modified as the sounds (1-a-0).

Abstract--We introduce EPIC-SOUNDS, a large-scale dataset Index Terms--audio recognition, action recognition, audio of audio annotations capturing temporal extents and class lables event detection, audio dataset, data collection, dataset within the sufficient enterment in index (the memore and the superscript and the super

EPIC-SOUNDS

Dima Damen[†] - Hazel Doughty[†] - Giovanni Maria Farinella[†] - Antonimo Furnari[†] - Evangelos Kazakos[†] - Jian Ma[†] - Davide Moltisanti[†] -Jonathan Munro[†] - Toby Perrett[†] - Will Price[†] - Michael Wray[†]

Received: 18 Jan 2021, Revised: 23 Aug 2021, Accepted: 17 Sep 2021

Abstract This paper introduces the pipeline to extend the largest dataset in egocentric vision, EFPC-KITCHENS. The effort culminates in EFPC-KTICHENS. 40, outcoin of 10 hours, 200 frames, 90K actions in 700 variable-length vision, action understanding, Multi-Benchmark Jong-term unscripted activities in 45 environments, using hazd-mounted cancers. Compared to its previous using a novel pipeline that allows desser [547] more actions per minute; and more complete annotations of the set of the actions per minute; and more complete annotations of the set of the actions per minute; and more complete annotations of since the dawn of machine learning for computer vision,

ne-grained actions (+128% more action segments). this collection enables are challenges such as action tasks from classification (E3) to detection [E3], exprimtectrica and evaluating the "test of time" - i.e., its [E4] and segmentation [E3], horeasingly, datasets hether models trained on data collected in 2018 can meranise to new footage collected two years hate. 10]. self-supervision [E23] or additional annotations [E4] 10]. Hence the independence of t

EPIC-Kitchens 100

EPIC Fields Marrying 3D Geometry and Video Understanding

Vadim Tschernezki^{***} Ahmad Darkhalil^{**} Zhifan Zhu^{**} David Fouhey^{*} Iro Laina^{*} Diane Larlus^{*} Dima Damen^{*} Andrea Vedaldi

VGG, University of Oxford University of Bristol New York University NAVER LABS Europe : Equal Contribution

Abstract

Neural rendering is fuelling a unification of learning, 3D geometry and video understanding that has been waiting for more than two decades. Progress, however, is still hampered by a lack of suitable datasets and benchmarks. To address this gap, we introduce EPIC Fields, an augmentation of EPIC-KITCHENS with 3D camera information. Like other datasets for neural rendering, EPIC Fields removes the complex and expensive step of reconstructing cameras using photogrammetry, and allows researchers to focus on modelling problems. We illustrate the challenge of photogrammetry in egocentric videos of dynamic actions and propose innovations to address them. Compared to other neural rendering datasets, EPIC Fields is better tailored to video understanding because it is paired with labelled action segments and the recent VISOR segment annotations. To further motivate the community, we also evaluate three benchmark tasks in neural rendering and segmenting dynamic objects, with strong baselines that showcase what is not possible today. We also highlight the advantage of geometry in semi-supervised video object segmentations on the VISOR annotations. EPIC Fields reconstructs 96% of videos in EPIC-KITCHENS, registering 19M frames in 99 hours recorded in 45 kitchens, and is available from:

EPIC-KITCHENS VISOR Benchmark VIdeo Segmentations and Object Relations

Ahmad Darkhalil^{★+} Dandan Shan^{★+} Bin Zhu^{★+} Jian Ma^{★+} Amlan Kar⁺ Richard Higgins[●] Sanja Fidler⁺ David Fouhey⁺ Dima Damen⁺

*Uni. of Bristol, UK *Uni. of Michigan, US *Uni. of Toronto, CA *: Co-First Authors

Abstract

We introduce VISOR, a new dataset of pixel annotations and a benchmark suite for segmenting hands and active objects in egocentric video. VISOR annotates videos from EPIC-KITCHENS, which comes with a new set of challenges not encountered in current video segmentation datasets. Specifically, we need to ensure both short- and long-term consistency of pixel-level annotations as objects undergo transformative interactions, e.g. an onion is peeled, diced and cooked - where we aim to obtain accurate pixel-level annotations of the peel, onion pixees, chopping board, taife, pan, as well as the acting hands. VISOR introduces an annotation pipeline, Al-powered in parts, for scalability and quality. In total, we publicly release 72/K manual semantic masks of 257 object classes, 99M interoplated dense masks, 67K hand-object relations, covering 36 hours of 179 untrimmed videos. Along with the anotations, we introduce three challenges in video object sementation, interaction understanding and long-term resoning.

For data code and leaderboards: http://enic.kitchong.github.ic/WISO

EPIC-Kitchens VISOR

HD-EPIC: A Highly-Detailed Egocentric Video Dataset

Toby Perrett⁴ Ahmad Darkhalal⁴ Saptarshi Sinha⁴ Omar Emara⁴ Sam Pollard⁴ Kranti Parida⁴ Kaiting Liu,^{*} Prajwal Gatti⁴ Siddhant Bansal⁴ Kevin Flanagan⁴ Jacob Chalk^{*} Zhifan Zhu⁴ Rhodri Guerriet^{*} Fahd Abdelazim⁴ Bin Zhu⁴ Davide Moltisanti^{*} Michael Wray⁴ Hazel Doughty⁴ Dima Damen⁴ ¹Uni of Briss⁴ Leisch Uni^{*} Steppere Mangement Uni^{*} Of the Hazel Toughty⁵

Abstract

We show the potential of our highly-detailed monotations through a challenging VQA benchmark of 26K questions as sensing the capability to recogine recepts, ingredients, and and gaze directions. 3D perception, object motion bits of the sensitive sensitive sensitive sensitive only achieves 3X.5% on this benchmark, showcasing in tab additionally senses a chine reception, object motion ingred the senses are increased by the sensitive additionally senses a chine reception, south recognition ingred achieves a sense and senses and long-term video-object segmentation on HD-EPIC. In HD-EPIC 141 hours of video in 5 kitchens with digital traits of 413 kitchen fatures, capatric perception, Stepter 20K and a senses of the senses of the senses of the sense printed actions, S1K audio events, D0K object morement and 37K object masks filled to 3D. On average, we have as 523 monitorized relia sense minute of own averaging when the 354 monitorized relia sense minutes of own according the sense of the sense minute of own averaging when the sense of the senses of the sense minute of own average when the sense of the sense minute own averaging the senses of the senses of the senses of the sense of the senses of the sense of th

<u>HD-EPIC</u>

EPIC-KITCHENS

TEAM

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro and Toby Perrett, Will Price, Michael Wray (2021). The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines. PAMI, 43(11), pp. 4125-4141.

Dima Damen **Principal Investigator University of Bristol** United Kingom

Davide Moltisanti (Apr 2017 -) **University of Bristol**

Antonino Furnari (Jul 2017 -) University of Catania

Sanja Fidler **Co-Investigator** University of Toronto Canada

Michael Wray

(Apr 2017 -)

University of Bristol

Jonathan Munro

(Sep 2017 -)

University of Bristol

Giovanni Maria Farinella **Co-Investigator** University of Catania Italy

Hazel Doughty (Apr 2017 -) **University of Bristol**

Evangelos Kazakos

(Sep 2017 -)

University of Bristol

Toby Perrett (Apr 2017 -) **University of Bristol**

Will Price (Oct 2017 -) University of Bristol

KITCHENS

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro and Toby Perrett, Will Price, Michael Wray (2021). The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines. PAMI, 43(11), pp. 4125-4141.

https://epic-kitchens.github.io/

EPIC-KITCHENS-100

Dima Damen University of Bristol

University of Bristol

Giovanni M. Farinella University of Catania

Antonino Furnari University of Catania

Evangelos Kazakos University of Bristol

Jian Ma University of Bristol

Davide Moltisanti University of Bristol

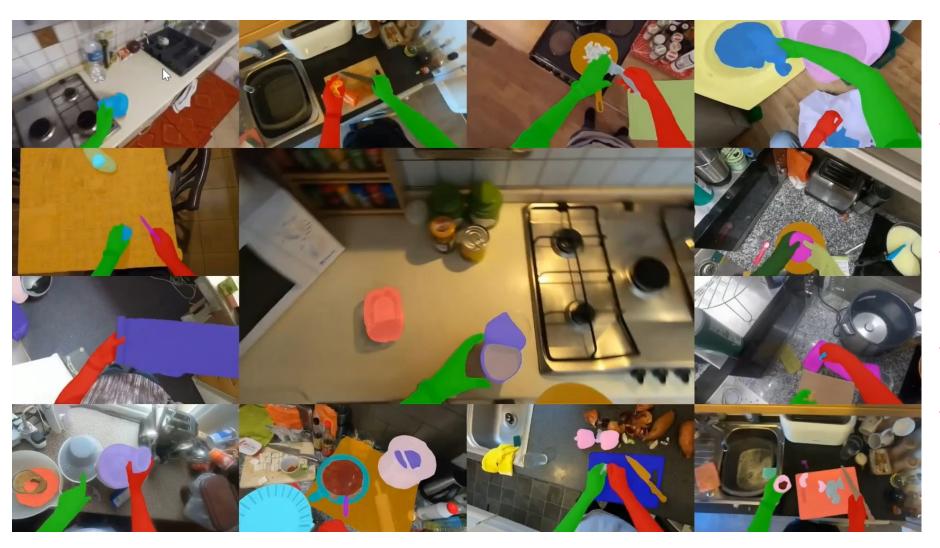
Jonathan Munro University of Bristol

Toby Perrett University of Bristol

Will Price University of Bristol

Michael Wray University of Bristol

EPIC-KITCHENS-55 EPIC-KITCHENS-100

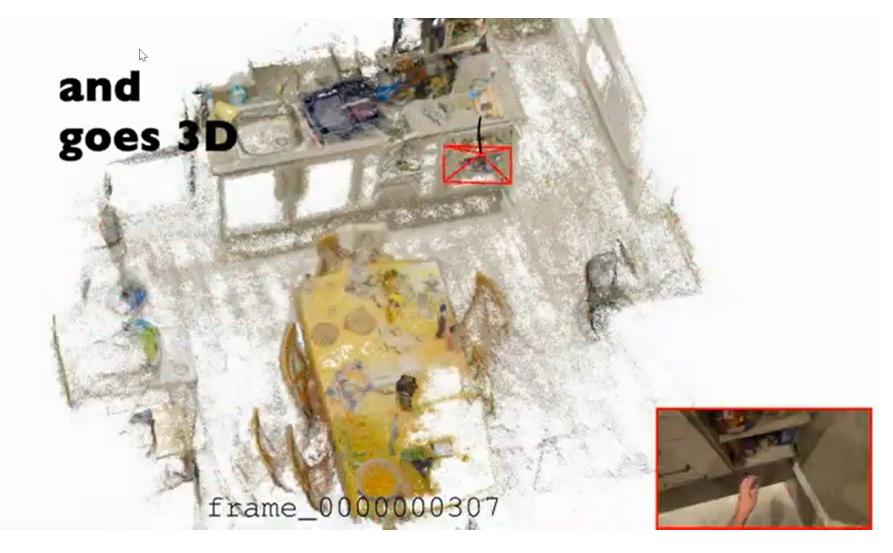

No. of Hours	55	100
No. of Kitchens	32	45
No. of Videos	432	700
No. of Action Segments	39,432	89,979
Action Classes	2,747	4,025
Verb Classes	125	97
Noun Classes	331	300
Splits	Train/Test	Train/Val/Test
No. of Challenges	3	6 (4 new challenges)

https://epic-kitchens.github.io/

Università di Catania EPIC-Kitchens VISOR

- 272K manual sparse masks for hands and active objects;
- Hand-object contact relations;
- 1477 unique entities;
- 22 categories.

Università di Catania **EPIC-SOUNDS**



- 74.8K categorised audio segments;
- Material-based collision sounds;
- Repetitive sounds;
- 44 classes.

- 19M registered frames;
- Camera poses;
- 3D reconstruction;
- Paired with VISOR annotations.

Preps and Steps

- Recipe and Nutrition;
- Preparation and Step;
- Narrations;
- Audio Annotations; •
- Digital Twin;
- Gaze Priming;

- Semi-Supervised Video Object Segmentation Challenge
- EPIC-SOUNDS Audio-Based Interaction Recognition
- EPIC-SOUNDS Audio-Based Interaction Recognition
- Action Recognition
- Action Detection
- UDA for Action Recognition
- Multi-Instance Retrieval

tion, Act

Università di Catania EPIC-KITCHENS Workshops & Challenges

17 June 2024 - Seattle, USA Room: Summit 428

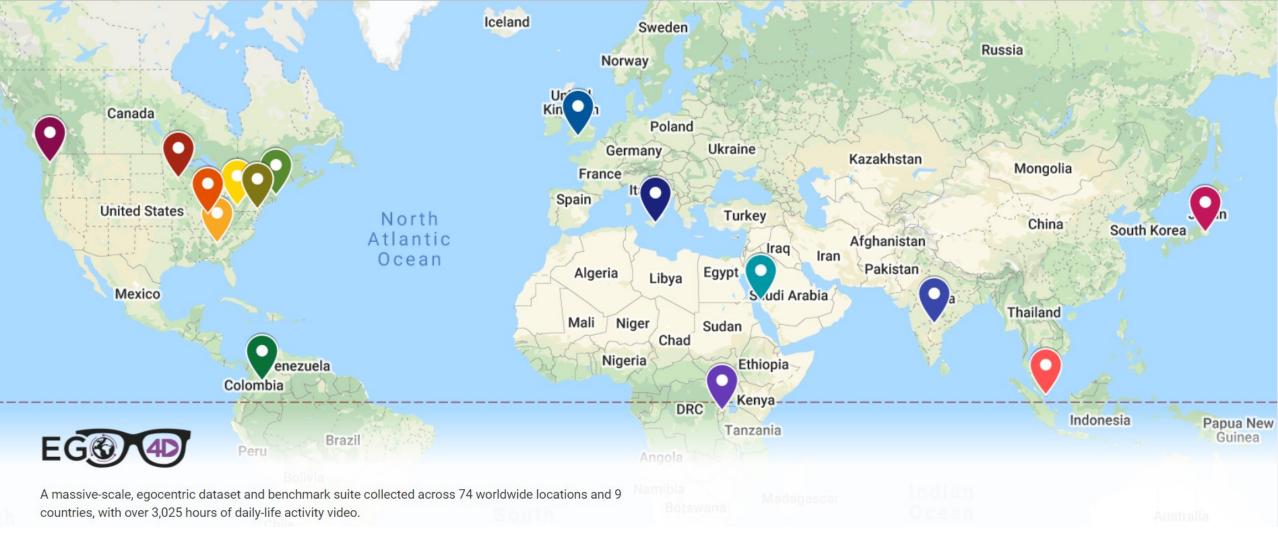


Can We Scale?

Consortium

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

FACEBOOK AI


Ego4D: Around the World in 3,000 Hours of Egocentric Video 84 authors

Kristen Grauman^{1,2}, Andrew Westbury¹, Eugene Byrne^{*1}, Zachary Chavis^{*3}, Antonino Furnari^{*4}, Rohit Girdhar^{*1}, Jackson Hamburger^{*1}, Hao Jiang^{*5}, Miao Liu^{*6}, Xingyu Liu^{*7}, Miguel Martin^{*1}, Tushar Nagarajan^{*1,2}, Ilija Radosavovic^{*8}, Santhosh Kumar Ramakrishnan^{*1,2}, Fiona Ryan^{*6}, Jayant Sharma*3, Michael Wray*9, Mengmeng Xu*10, Eric Zhongcong Xu*11, Chen Zhao*10, Siddhant Bansal¹⁷, Dhruv Batra¹, Vincent Cartillier^{1,6}, Sean Crane⁷, Tien Do³, Morrie Doulaty¹³. Akshay Erapalli¹³, Christoph Feichtenhofer¹, Adriano Fragomeni⁹, Qichen Fu⁷, Christian Fuegen¹³, Abrham Gebreselasie¹², Cristina González¹⁴, James Hillis⁵, Xuhua Huang⁷, Yifei Huang¹⁵, Wenqi Jia⁶, Weslie Khoo¹⁶, Jachym Kolar¹³, Satwik Kottur¹³, Anurag Kumar⁵, Federico Landini¹³, Chao Li⁵, Zhenqiang Li¹⁵, Karttikeya Mangalam^{1,8}, Raghava Modhugu¹⁷ Jonathan Munro⁹, Tullie Murrell¹, Takumi Nishiyasu¹⁵, Will Price⁹, Paola Ruiz Puentes¹⁴, Merey Ramazanova¹⁰, Leda Sari⁵, Kiran Somasundaram⁵, Audrey Southerland⁶, Yusuke Sugano¹⁵ Ruijie Tao¹¹, Minh Vo⁵, Yuchen Wang¹⁶, Xindi Wu⁷, Takuma Yagi¹⁵, Yunyi Zhu¹¹, Pablo Arbeláez^{†14}, David Crandall^{†16}, Dima Damen^{†9}, Giovanni Maria Farinella^{†4}, Bernard Ghanem^{†10}, Vamsi Krishna Ithapu^{†5}, C. V. Jawahar^{†17}, Hanbyul Joo^{†1}, Kris Kitani^{†7}, Haizhou Li^{†11}, Richard Newcombe^{†5}, Aude Oliva^{†18}, Hyun Soo Park^{†3}, James M. Rehg^{†6}, Yoichi Sato^{†15}, Jianbo Shi^{†19}, Mike Zheng Shou^{†11}, Antonio Torralba^{†18}, Lorenzo Torresani^{†1,20}, Mingfei Yan^{†5}, Jitendra Malik^{1,8}

 ¹Facebook AI Research (FAIR), ²University of Tex as at Austin, ³University of Minnesota, ⁴University of Catania, ⁵Facebook Reality Labs, ⁶Georgia Tech, ⁷Carnegie Mellon University, ⁸UC Berkeley, ⁹University of Bristol, ¹⁰King Abdullah University of Science and Technology, ¹¹National University of Singapore,
 ¹²Carnegie Mellon University Africa, ¹³Facebook, ¹⁴Universidad de los Andes, ¹⁵University of Tokyo, ¹⁶Indiana University, ¹⁷International Institute of Information Technology, Hyderabad, ¹⁸MIT, ¹⁹University of Pennsylvania, ²⁰Dartmouth

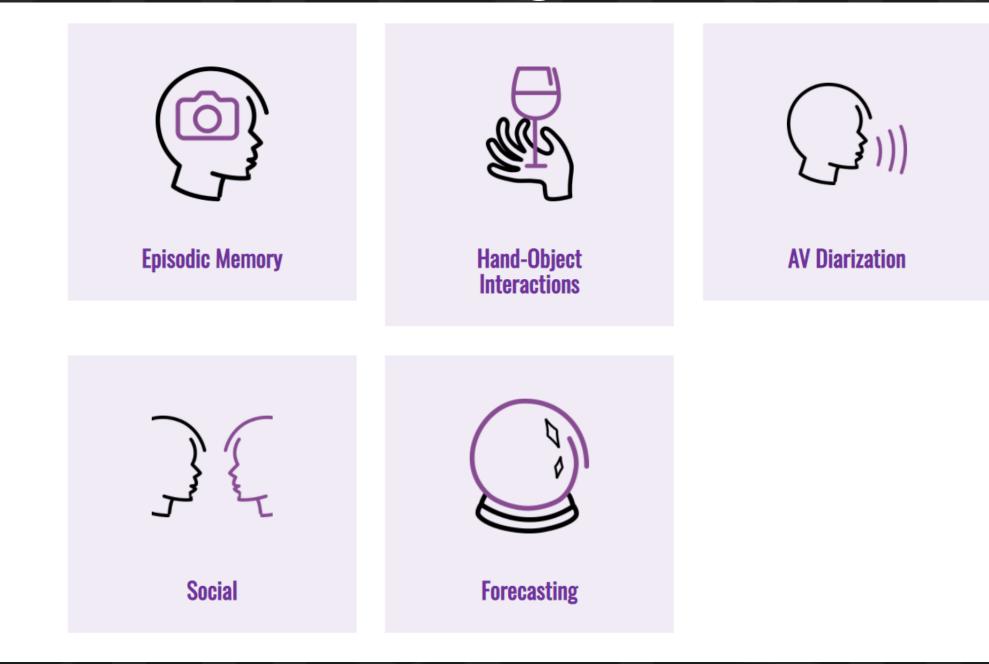
120 hours

3,025 Hours

855 Participants

5 Benchmark Tasks

Find out more: https://ego4d-data.org/



Animation by Michael Wray - https://mwray.github.io

Animation by Michael Wray - <u>https://www.youtube.com/watch?v=p78-V2RiKo</u>

Università di Catania Benchmarks and Challenges

1st Ego4D Workshop @ CVPR 2022

Held in conjunction with **<u>10th EPIC Workshop</u>**

19 and 20 June 2022

2nd International Ego4D Workshop @ ECCV 2022

24 October 2022

3rd International Ego4D Workshop @ CVPR 2023

Held in conjunction with 11th EPIC Workshop

<u>19 June 2023</u>

First Joint Egocentric Vision (EgoVis) Workshop Held in Conjunction with CVPR 2024 17 June 2024 - Seattle, USA Room: Summit 428

Università di Catania Happy Ending?

Università di Catania EGO-EXO4D Team

https://ego-exo4d-data.org/

Iniversità

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

Kristen Grauman^{1,2}, Andrew Westbury¹, Lorenzo Torresani¹, Kris Kitani^{1,3}, Jitendra Malik^{1,4}, Triantafyllos Afouras^{*1}, Kumar Ashutosh^{*1,2}, Vijay Baiyya^{*5}, Siddhant Bansal^{*6,7}, Bikram Boote^{*8}, Eugene Byrne^{*1,9}, Zach Chavis^{*10}, Joya Chen^{*11}, Feng Cheng^{*1}, Fu-Jen Chu^{*1}, Sean Crane^{*9}, Avijit Dasgupta^{*7}, Jing Dong^{*5}, Maria Escobar^{*12}, Cristhian Forigua^{*12}, Abrham Gebreselasie^{*9}, Sanjay Haresh^{*13}, Jing Huang^{*1}, Md Mohaiminul Islam^{*14}, Suyog Jain^{*1}, Rawal Khirodkar^{*9}, Devansh Kukreja^{*1}, Kevin J Liang^{*1}, Jia-Wei Liu^{*11}, Sagnik Majumder^{*1,2}, Yongsen Mao^{*13}, Miguel Martin^{*1} Effrosyni Mavroudi^{*1}, Tushar Nagarajan^{*1}, Francesco Ragusa^{*15}, Santhosh Kumar Ramakrishnan^{*2}, Luigi Seminara^{*15}, Arjun Somayazulu^{*2}, Yale Song^{*1}, Shan Su^{*16}, Zihui Xue^{*1,2}, Edward Zhang^{*16}, Jinxu Zhang^{*16}, Angela Castillo¹², Changan Chen², Xinzhu Fu¹¹, Ryosuke Furuta¹⁷, Cristina González¹², Prince Gupta⁵, Jiabo Hu¹⁸, Yifei Huang¹⁷, Yiming Huang¹⁶, Weslie Khoo¹⁹, Anush Kumar¹⁰, Robert Kuo¹⁸, Sach Lakhavani⁵, Miao Liu¹⁸, Mi Luo², Zhengyi Luo³, Brighid Meredith¹⁸, Austin Miller¹⁸, Oluwatumininu Oguntola¹⁴, Xiaqing Pan⁵, Penny Peng¹⁸, Shraman Pramanick²⁰, Merey Ramazanova²¹, Fiona Ryan²², Wei Shan¹⁴, Kiran Somasundaram⁵, Chenan Song¹¹, Audrey Southerland²², Masatoshi Tateno¹⁷, Huiyu Wang¹, Yuchen Wang¹⁹, Takuma Yagi¹⁷, Mingfei Yan⁵, Xitong Yang¹, Zecheng Yu¹⁷, Shengxin Cindy Zha¹⁸, Chen Zhao²¹, Ziwei Zhao¹⁹, Zhifan Zhu⁶, Jeff Zhuo¹⁴, Pablo Arbeláez^{†12}, Gedas Bertasius^{†14}, David Crandall^{†19}, Dima Damen^{†6}, Jakob Engel^{†5}, Giovanni Maria Farinella^{†15}, Antonino Furnari^{†15}, Bernard Ghanem^{†21}, Judy Hoffman^{†22}, C. V. Jawahar^{†7}, Richard Newcombe^{†5}, Hyun Soo Park^{†10}, James M. Rehg^{†8}, Yoichi Sato^{†17}, Manolis Savva^{†13}, Jianbo Shi^{†16}, Mike Zheng Shou^{†11}, and Michael Wray^{†6}

"Release Brakes"

Demonstration proficiency: Correct / incorrect execution

Keystep Recognition

Target object tracks in Ego

Relation

Pose Estimation

Second Joint Egocentric Vision (EgoVis) Workshop Held in Conjunction with CVPR 2025 11 or 12 June 2025 - Nashville, USA

Ego-Exo4D

EGO-EXO4D

Ego4D

EPIC-Kitchens

University of UH XCOLOR Abstract Dataset Code Tasks Paper Supp.Material Acknow. Related Work People

The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain

F. Ragusa^{1,3}, A. Furnari¹, S. Livatino², G. M. Farinella¹

¹IPLab, Department of Mathematics and Computer Science - University of Catania, IT ²University of Hertfordshire, Hatfield, Hertfordshire, U.K. ³Xenia Gestione Documentale s.r.l. - Xenia Progetti s.r.l., Acicastello, Catania, IT

The new version of MECCANO is available here!

Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities

 Fadime Sener¹
 Dibyadip Chatterjee²
 Daniel Shelepov¹
 Kun He¹

 Dipika Singhania²
 Robert Wang¹
 Angela Yao²

¹Reality Labs at Meta ²National University of Singapore

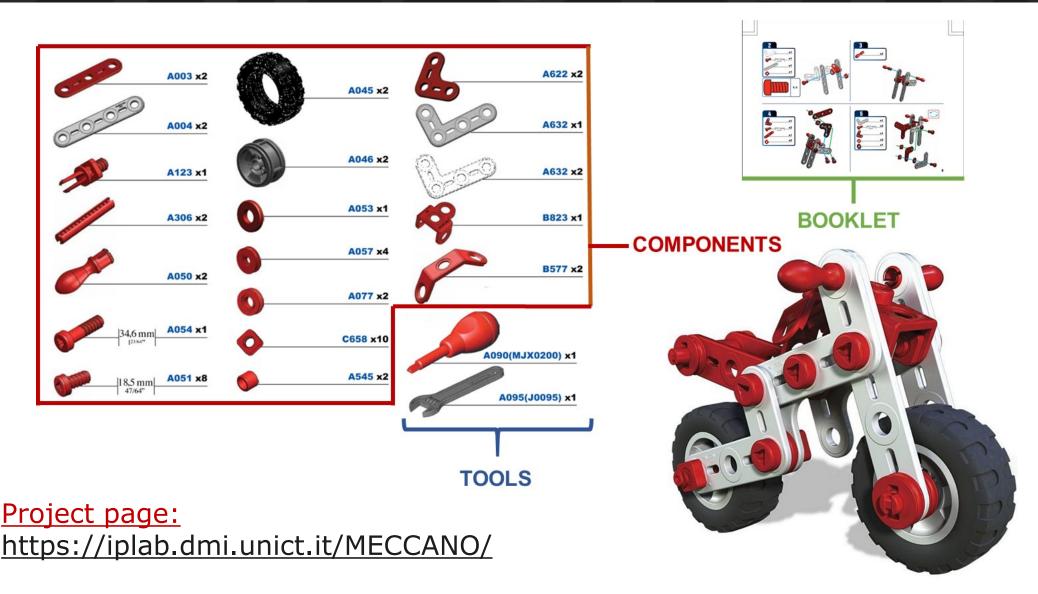
CVPR 2022

IndustReal: A Dataset for Procedure Step Recognition Handling Execution Errors in Egocentric Videos in an Industrial-Like Setting

Tim J. Schoonbeek¹, Tim Houben¹, Hans Onvlee², Peter H.N. de With¹, Fons van der Sommen¹, ¹Eindhoven University of Technology, ²ASML Research Published in: WACV 2024

Abstract

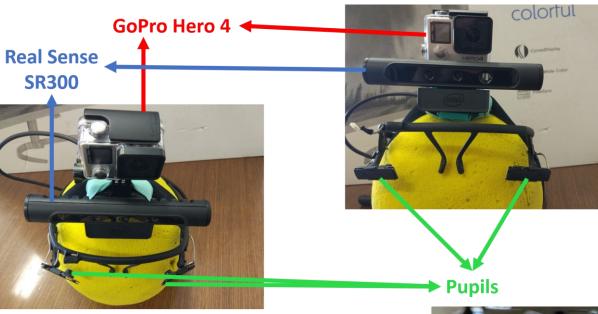
ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios

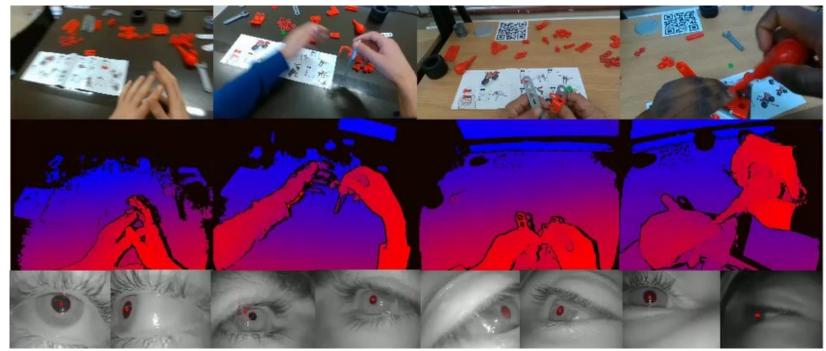

ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios.

Code

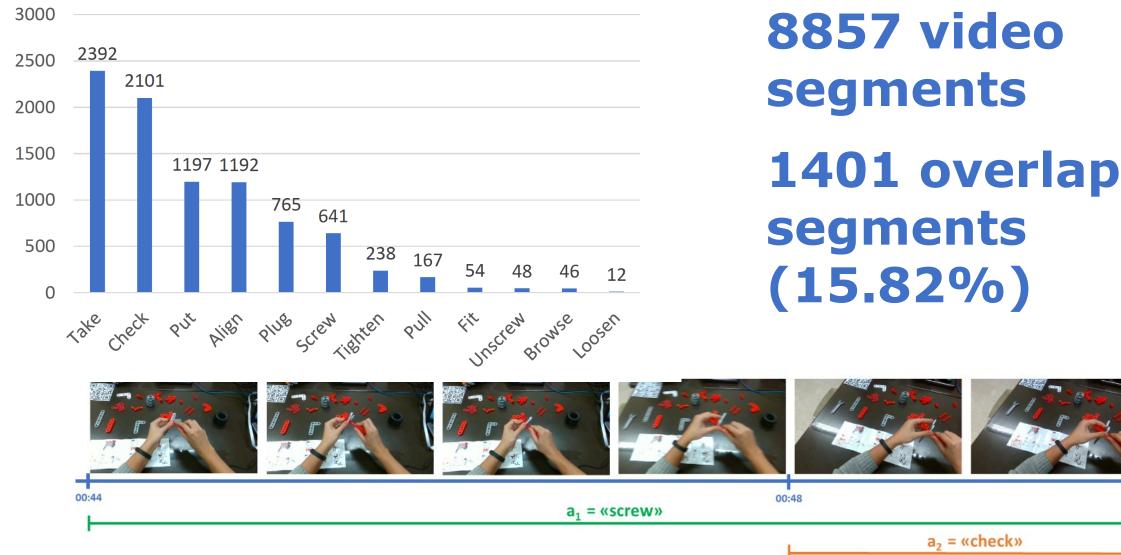
Data

Università di Catania The MECCANO Dataset





F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).



di Catania Data Annotation: Temporal Verb Annotations

00:50

Verbs Classes

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).

Data Annotation: Active Object Bounding Boxes Università di Catania

bar

red_perforated_bar

wheels axle

handlebar

partial model

gray_angled_bar

bolt

red_3_junction_bar

wrench

gray_bar

tire

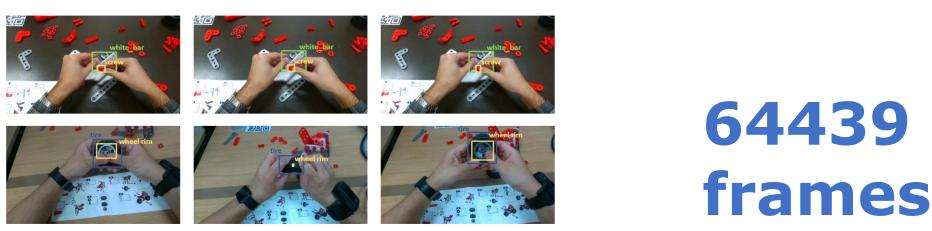
rim

white bar

washer

instruction_booklet

cylinder



red_angled_bar

screw

red_4_junction_bar

screwdriver

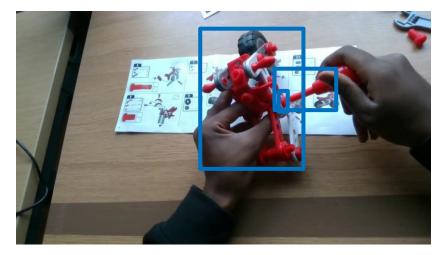
F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (https://arxiv.org/abs/2209.08691).

Università di Catania Data Annotation: Action Annotations

Action instances	ID Action	ID Action	ID Action
	0 check_booklet	20 put_screwdriver	40 take_red_perforated_junction_bar
	1 align_screwdriver_to_screw	21 put_red_perforated_junction_bar	41 fit_rim_tire
000 -	2 take_partial_model	22 put_gray_angled_perforated_bar	42 take_rim
	3 plug_rod	23 take_red_perforated_bar	43 take_red_4_perforated_junction_bar
	4 screw_screw_with_screwdriver	24 take_gray_perforated_bar	44 put_screw
	5 take_bolt	25 take_red_angled_perforated_bar	45 put_rod
	6 align_objects	26 tighten_nut_with_hands	46 put_washer
500 -	7 take_washer	27 take_white_angled_perforated_bar	47 unscrew_screw_with_screwdriver
	8 take_screw	28 take_rod	48 put_red_perforated_bar
	9 put_white_angled_perforated_bar	29 put_tire	49 put_wrench
	10 unscrew_screw_with_hands	30 put_roller	50 put_bolt
000 -	11 take_screwdriver	31 pull_partial_model	51 take_wheels_axle
	12 plug_handlebar	32 pull_screw	52 put_wheels_axle
	13 plug_screw	33 take_gray_angled_perforated_bar	53 put_red_angled_perforated_bar
	14 tighten_nut_with_wrench	34 take_tire	54 put_red_4_perforated_junction_bar
	15 put_gray_perforated_bar	35 pull_rod	55 take_objects
500	16 align_wrench_to_bolt	36 take_wrench	56 put_objects
- Hui	17 put_partial_model	37 browse_booklet	57 loosen_bolt_with_hands
	18 screw_screw_with_hands	38 take_roller	58 put_booklet
- HIHHHHHHHH	19 take booklet	39 take_handlebar	59 put rim
			60 put_handlebar

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

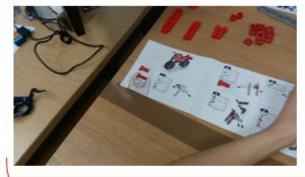
align screadriver to screw


F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).

Egocentric Human-Object Interaction

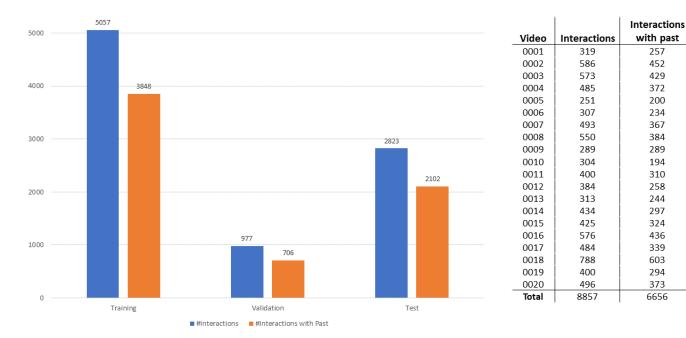
$$O = \{o_1, o_2, \dots, o_n\} \qquad V = \{v_1, v_2, \dots, v_m\}$$
$$e = (v_h, \{o_1, o_2, \dots, o_i\})$$

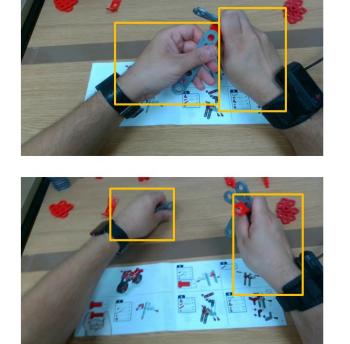
<take, screwdriver>

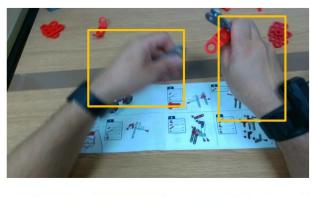

<screw, {screwdriver, screw, partial_model}>

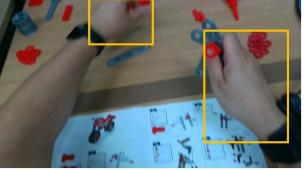
Università di Catania Data Annotation: Next Active Object Annotations

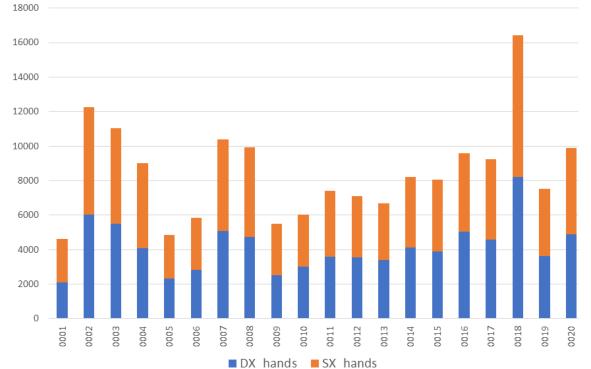
(«take, bolt»)

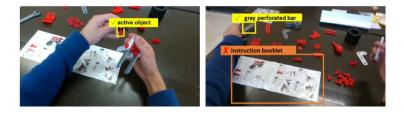

0.2 s

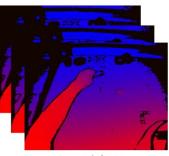

start frame




0.2 s




1) Action Recognition


end frame

RGB+Gaze Depth+Gaze take screwdriver objects screwdriver screwdrive

2) Active Object Detection and Recognition

3) EHOI Detection

<take>

<gray perforated bar>

Ground Truth action: take bolt

take bolt, align objects, tighten bolt, plug screw, check booklet

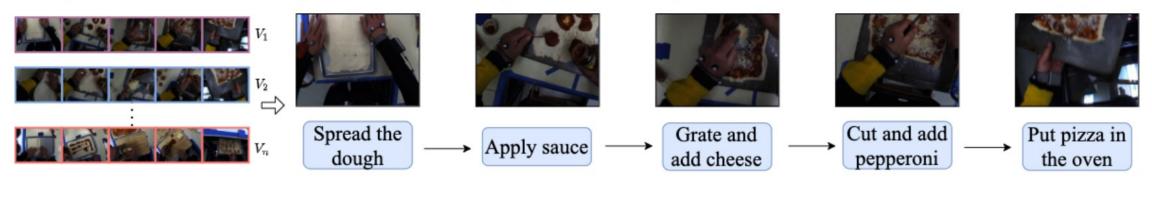
take bolt, align objects plug screw, tighten bolt, check booklet

 $\tau_a = 1.00$

take bolt, align objects, plug screw, check booklet, tighten bolt

take bolt , align objects plug screw, check booklet, take screwdriver

5) Next-Active Object (NAO) Detection



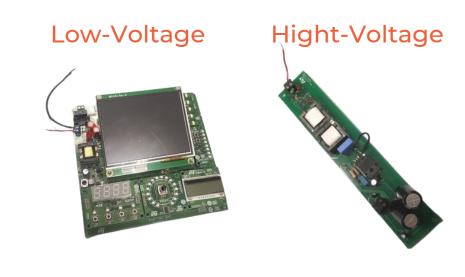
X washer S screw

Time to start = 1.6s

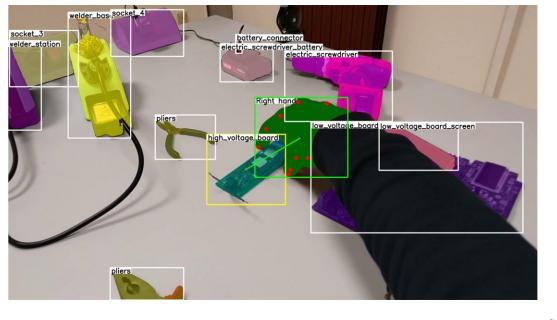
Time to start = 0.8s

Given multiple videos of a task, the goal is to identify the key-steps and their order to perform the task.

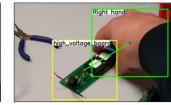
 EgoProceL (proposed)
 CMU-MMAC
 EGTEA Gaze+ 4) MECCANO5) EPIC-Tent


B. Siddhant, A. Chetan, C. V. Jawahar, My View is the Best View: Procedure Learning from Egocentric Videos. In European Conference on Computer Vision (ECCV), 2022.

Università di Catania ENIGMA-51 Dataset

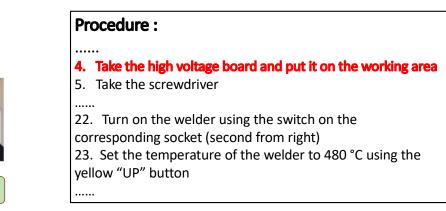

We designed two procedures consisting of instructions that involve humans interacting with the objects present in the laboratory to achieve the goal of repairing two electrical boards

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios. F. Ragusa R. Leonardi, M. Mazzamuto, C. Bonanno, R. Scavo, A. Furnari, G. M. Farinella. WACV (2024).

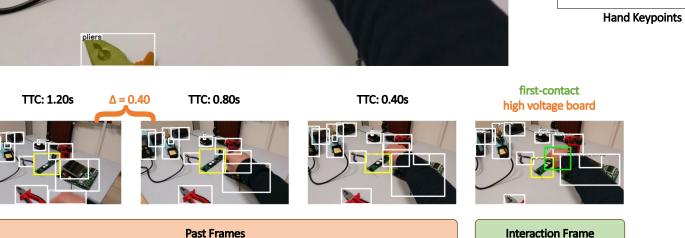


Hand-Object boxes

Hand-Object Masks



Human-Object Interactions



Environment 3D Model

Object 3D Models

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios. F. Ragusa R. Leonardi, M. Mazzamuto, C. Bonanno, R. Scavo, A. Furnari, G. M. Farinella. WACV (2024).

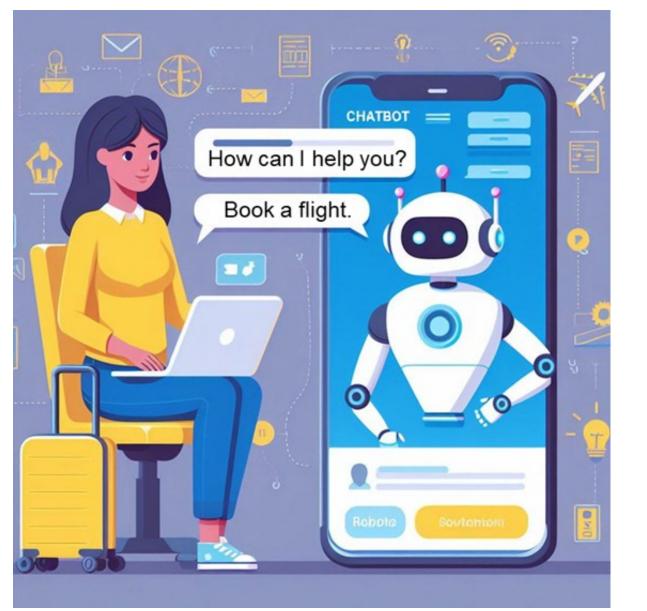
Untrimmed temporal detection of human-object interactions


Egocentric human-object interaction detection

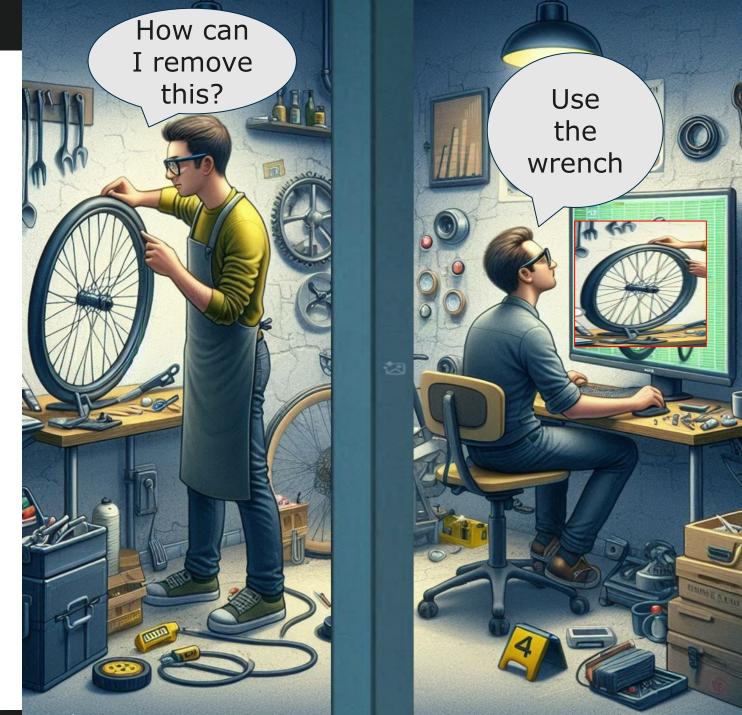
Short-term object interaction anticipation

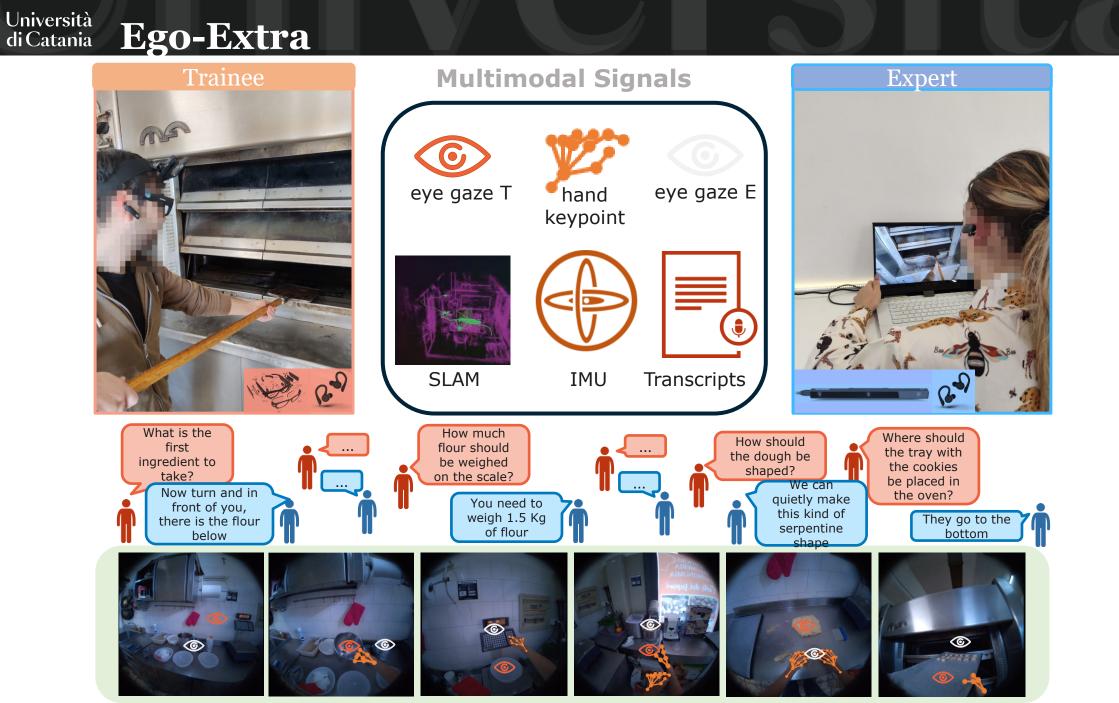
Natural language understanding of intents and entities

Università ENIGMA-360 (Extension)



- Temporal Action Segmentation
- Keystep Recognition
- Mistake Detection

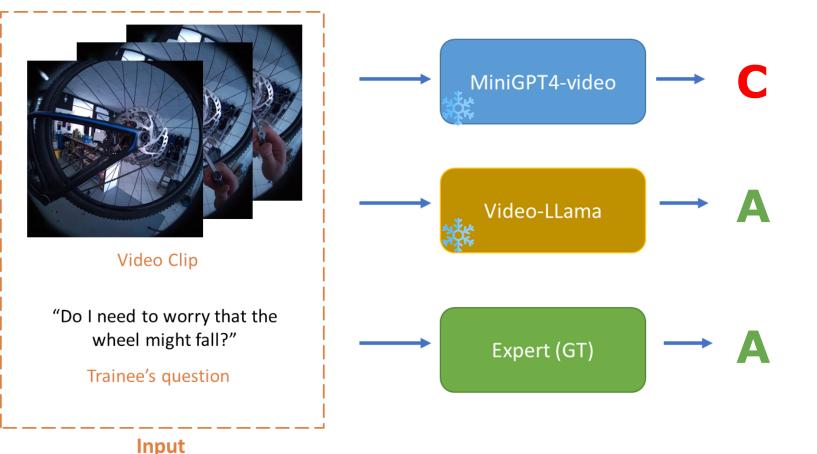



A New Dataset

Egocentric videos of subjects engaging different procedural activities in which they are not expert or not very expert (i.e., Trainees);

Università di Catania

Conversations between trainees and experts happen naturally during the collection.

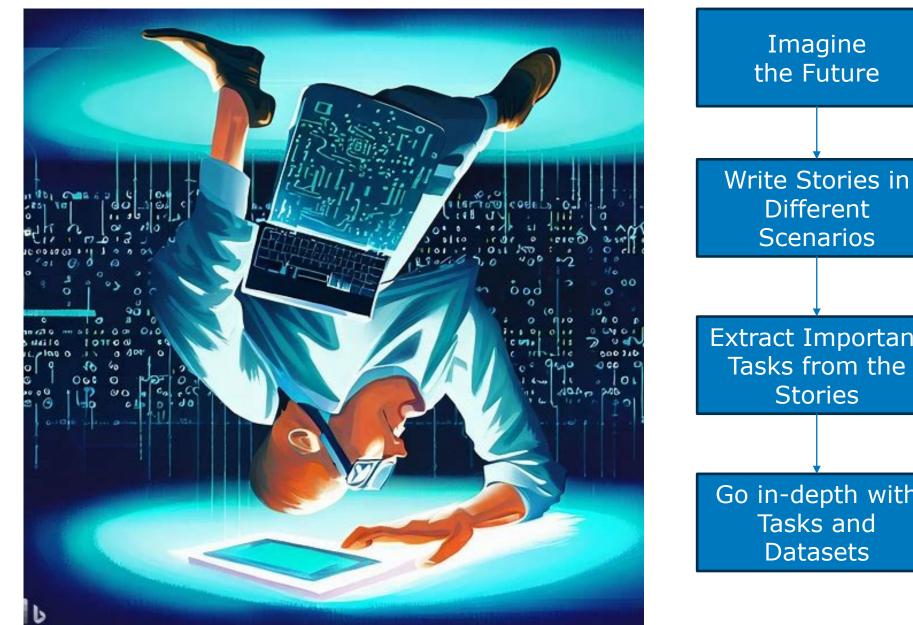


-►

Multiple-Choice Question Answering

- A) "No, not at this moment. Now, hold it like that. "
- B) "Maybe we should stop and secure everything again to be absolutely sure."
- c) "No, but it's better to use additional supports or have someone assist you just in case."
- D) "No, just let go and see if it stays in place."

What's Next?



An Outlook into the Future

Università di Catania What's Relevant in Egovision? A top-down approach

A lot of data!

Extract Important Tasks from the Stories

Go in-depth with Tasks and Datasets

Rather than being extensive, we considered seminal and state-of-the-art works

di Catania An Outlook into the Future of Egocentric Vision

OpenReview.net

An Outlook into the Future of Egocentric Vision

Abstract What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current stateof-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.

Received: date / Accepted: date

Keywords Egocentric Vision, Future, Survey, Localisation, Scene Understanding, Recognition, Anticipation, Gaze Prediction, Social Understanding, Body Pose Estimation, Hand and Hand-Object Interaction, Person Identification, Summarisation, Dialogue, Privacy

Contents

- 1
 Introduction
 1

 2
 Imagining the Future
 2
- *: Equal Contribution/First Author
- [†]: Equal Senior Author

C. Plizzari, G. Goletto and T. Tommasi, Politecnico di Torino, Italy · A. Furnari, F. Ragusa and G. M. Farinella, University of Catania, Italy · S. Bansal and D. Damen, University of Bristol, UK. E-mail: Tatiana.Tommasi@polito.it

ty of OL 14 A 14 A

2.2	EGO-Worker	
2.3	EGO-Tourist	
2.4	EGO-Police 6	
2.5	EGO-Designer	
Fron	n Narratives to Research Tasks	
Rese	arch Tasks and Capabilities	
4.1	Localisation	
4.2	3D Scene Understanding	
4.3	Recognition	
4.4	Anticipation	
4.5	Gaze Understanding and Prediction 23	
4.6	Social Behaviour Understanding	
4.7	Full-body Pose Estimation	
4.8	Hand and Hand-Object Interactions 30	
4.9	Person Identification	
4.10	Summarisation	
4.11	Dialogue	
4.12	Privacy	
4.13	Beyond individual tasks	
Gene	eral Datasets	
Cone	clusion	

1 Introduction

Designing and building tools able to support human activities, improve quality of life, and enhance individuals' abilities to achieve their goals is the ever-lasting aspiration of our species. Among all inventions, digital computing has already had a revolutionary effect on human history. Of particular note is mobile technology, currently integrated in our lives through hand-held devices, i.e. mobile smart phones. These are nowadays the de facto for outdoor navigation, capturing static and moving footage of our everyday and connecting us to both familiar and novel connections and experiences.

However, humans have been dreaming about the next-version of such mobile technology — wearable computing, for a considerable amount of time. Imaginations

An Outlook into the Future of Egocentric Vision 🛛 🞰

[C'] 💼]

<u>ଟ</u> 💼

Comment

C 🗍 💼

Chiara Plizzari, Gabriele Goletto, Antonino Furnari, Siddhant Bansal, Francesco Ragusa, Giovanni Maria Farinella, Dima Damen, Tatiana Tommasi

14 Aug 2023 OpenReview Archive Direct Upload Readers: 🔇 Everyone Show Revisions

Abstract: What will the future be? We wonder!

In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.

		Add	Comment
Reply Type: all 🗸 Author: everybody 🗸 Visible T	o: all readers → Hidden From: nobody →		6 Replies

Dash Related work on modeling social interactions, especially multimodal dialogue agents

Jaewoo Ahn

18 Aug 2023 OpenReview Archive Paper22166 Comment Readers: 🚱 Everyone Show Revisions

Comment:

I've been reading your fascinating work and wanted to contribute a suggestion based on my recent research in multimodal dialogue agents.

In our recent paper [1], we explored the benefits of a multimodal approach to dialogue personalization. Our study showed that incorporating both text and images in defining a persona greatly enriched the dialogue agent's understanding and personalization capabilities. Specifically, the image modality (i.e., egocentric vision) allowed the dialogue agents to access and better understand their personal characteristics and experiences based on their "episodic memory".

Drawing from this, I propose that there is a strong case to be made for the integration of egocentric vision into the domain of personalized dialogue agent responses. Egocentric vision, being intrinsically tied to personal perspective and experience, can serve as a valuable addition to a persona's episodic memory. This integration can enable chatbots to generate more contextually aware, and personalized responses based on the visual experiences of a user. The fusion of such vision-based episodic memory with textual modalities can be also a promising avenue for future research in personalized dialogue agents.

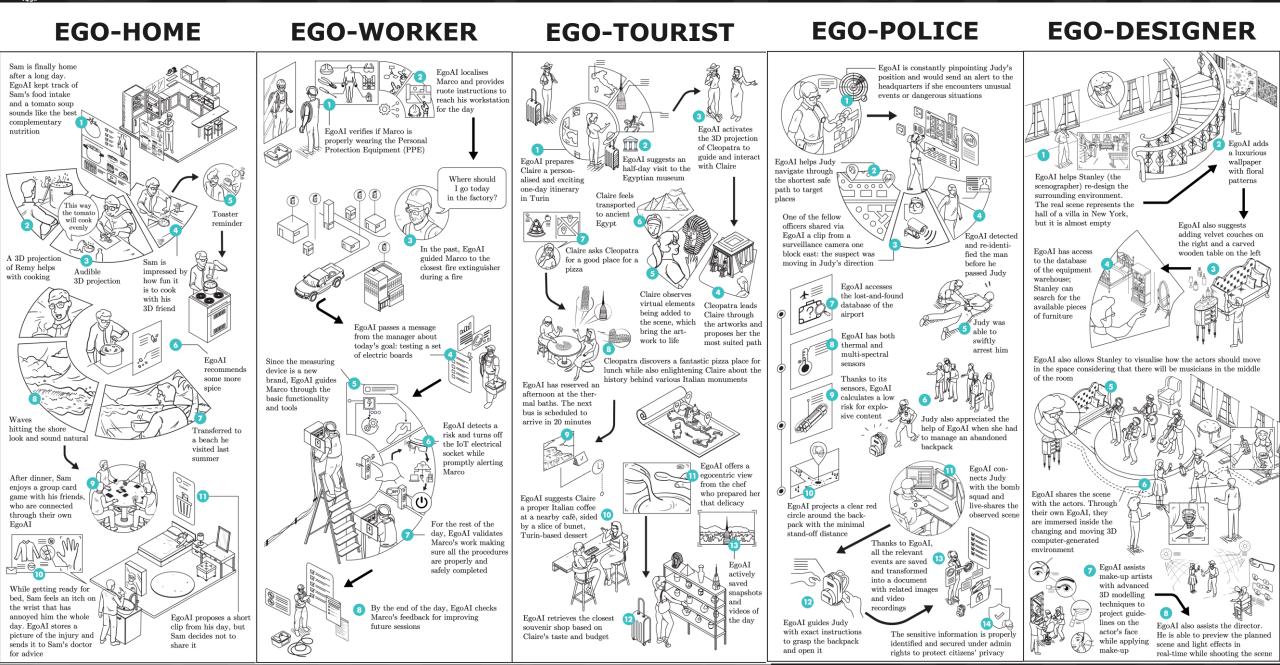
[1] Ahn et al. MPCHAT: Towards Multimodal Persona-Grounded Conversation, ACL 2023 (https://aclanthology.org/2023.acl-long.189/)

Related work on egocentric full-body pose estimation

Jiaxi Jiang

17 Aug 2023 (modified: 17 Aug 2023) OpenReview Archive Paper22166 Comment 🛛 Readers: 🚱 Everyone 🚽 Show Revisions

Comment:


Thanks for the nice paper, that's awesome!

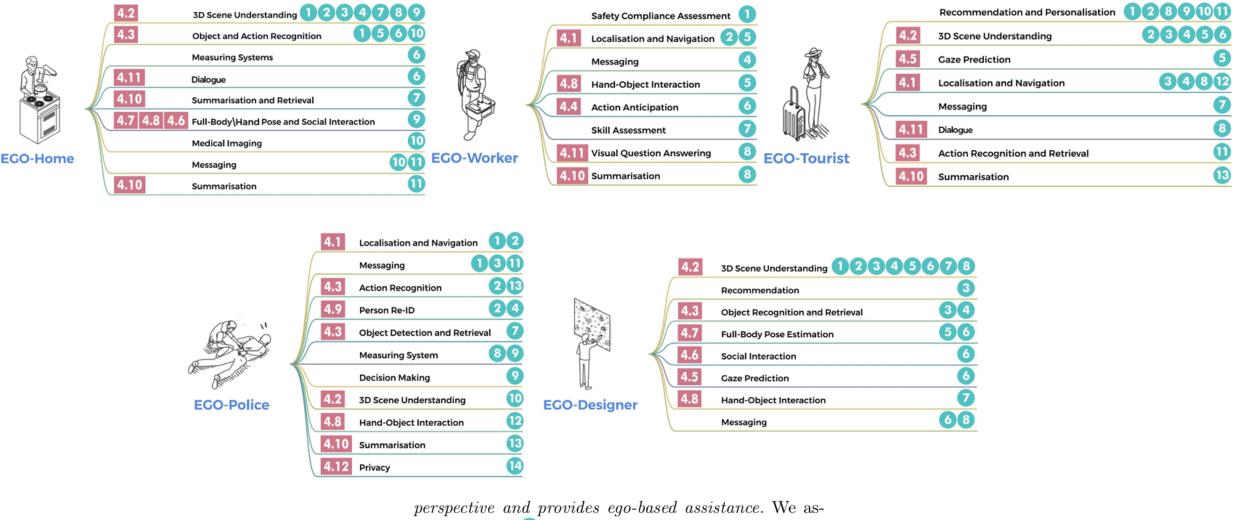
I would really appreciate if our work (AvatarPoser [1] and EgoPoser [2]) on the topic of egocentric full-body pose estimation can also be presented in this review paper.

https://arxiv.org/abs/2308.07123

https://openreview.net/forum?id=V3974SUk1w

Università di Catania An Outlook into the Future – Futuristic Stories

Università di Catania From Narratives to Research Tasks



12 Egocentric Vision Research Tasks

- 1. Localisation
- 2. 3D Scene Understanding
- 3. Recognition
- 4. Anticipation
- 5. Gaze Understanding and Prediction
- 6. Social Behaviour Understanding
- 7. Full Body Pose Estimation
- 8. Hand and Hand-Object Interactions
- 9. Person Identification
- 10.Summarisation
- 11.Dialogue
- 12. Privacy

Università di Catania Links between Stories and Tasks

sociate story parts with research tasks (marked by section number) and later revisit the link between these

Table 1 General Egocentric Datasets - Collection Characteristics. [†]: For EGTEA, Audio was collected but not made public. ^{*}: For Ego4D, apart from RGB, the other modalities are present for subsets of the data.

Dataset	Settings	Signals	Hours	Sequences	AVG. video duration	Participants
MECCANO (Ragusa et al 2023b)	Industrial	RGB, depth, gaze	6.9	20	20.79 min	20
ADL (Pirsiavash and Ramanan 2012)	Daily activities	RGB	10.0	20	30.00 min	20
HOI4D (Liu et al 2022c)	Table-Top	RGB, depth	22.2	4000	0.33 min	9
EGTEA Gaze+ † (Li et al 2021a)	Kitchen	RGB, gaze	27.9	86	$19.53 \min$	32
UTE (Lee et al 2012)	Daily Activities	RGB	37.0	10	222.00 min	4
EGO-CH (Ragusa et al 2020a)	Cultural Sites	RGB	37.1	180	$12.37 \min$	70
FPSI (Fathi et al 2012a)	Recreational Site	RGB	42.0	8	315.00 min	8
KrishnaCam (Singh et al 2016a)	Daily Routine	RGB, GPS, acc	69.9	460	9.13 min	1
EPIC-KITCHENS-100 (Damen et al 2022)	Kitchens	RGB, audio	100.0	700	$8.57 \min$	37
Assembly101 (Sener et al 2022)	Industrial	RGB, multi-view	167.0	1425	7.10 min	53
Ego4D* (Grauman et al 2022)	Multi Domain	RGB, Audio, 3D, gaze, IMU, multi	3670.0	9650	24.11 min	931

Table 2 General Egocentric Datasets - Current set of annotations. *: For Ego4D, apart from narrations, the remainingannotations are only available for subsets of the dataset depending on the benchmark

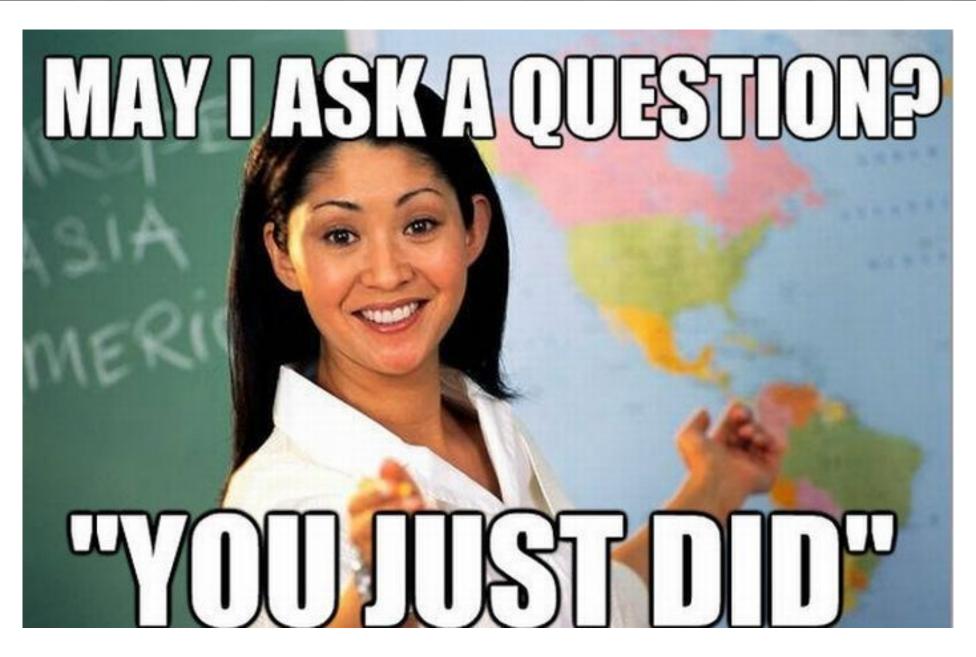
Dataset	Annotations						
MECCANO (Ragusa et al 2023b)	Temporal action segments, hand & object bounding boxes, hand-object interactions, next-active object						
ADL (Pirsiavash and Ramanan 2012)	Temporal action segments, objects bounding boxes, hand-object interactions						
HOI4D (Liu et al 2022c)	Temporal action segments, 3D hand poses and object poses, panoptic and motion segmentation, object meshes, scene point clouds						
EGTEA Gaze+ (Li et al 2021a)	Temporal action segments, hand masks, gaze						
UTE (Lee et al 2012)	Text descriptions, object segmentations						
EGO-CH (Ragusa et al 2020a)	Temporal locations, object bounding boxes, surveys, object masks						
FPSI (Fathi et al 2012a)	Temporal social interaction segments						
KrishnaCam (Singh et al $2016a$)	Motion classes, virtual webcams, popular locations						
EPIC-KITCHENS-100 (Damen et al 2022)	Temporal action video segments, Temporal audio segments, narrations, hand and objects masks, hand-object interactions, camera poses						
Assembly101 (Sener et al 2022)	Temporal action segments, 3D hand poses						
Ego4D* (Grauman et al 2022)	Narrations, Temporal action segments, moment queries, speaker labels, diarisation, hand bounding boxes, time to contact, active objects bounding boxes, trajectories, next-active objects bounding boxes						

Table 3 General Egocentric Datasets - Current set of tasks: 4.1 Localisation, 4.2 3D Scene Understanding, 4.3 Recognition,
4.4 Anticipation, 4.5 Gaze Understanding and Prediction, 4.6 Social Behaviour Understanding, 4.7 Full-body Pose Estimation,
4.8 Hand and Hand-Object Interactions, 4.9 Person Identification, 4.10 Summarisation, 4.11 Dialogue, 4.12 Privacy.

Task	41	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	4.10	4 1 1	4.12
Dataset	4.1	4.2	4.0	4.4	4.0	4.0	4.7	4.0	4.9	4.10	4.11	4.14
MECCANO (Ragusa et al 2023b)			\checkmark	\checkmark	\checkmark			\checkmark				
ADL (Pirsiavash and Ramanan 2012)			\checkmark	\checkmark						\checkmark		
HOI4D (Liu et al $2022c$)								\checkmark				
EGTEA Gaze+ (Li et al $2021a$)			\checkmark	\checkmark	\checkmark			\checkmark				
UTE (Lee et al 2012)								\checkmark		\checkmark		
EGO-CH (Ragusa et al 2020a)	\checkmark											
FPSI (Fathi et al 2012a)						\checkmark				\checkmark		\checkmark
KrishnaCam (Singh et al $2016a$)				\checkmark								
EPIC-KITCHENS-100 (Damen et al 2022)		\checkmark	\checkmark	\checkmark				\checkmark			\checkmark	\checkmark
Assembly101 (Sener et al 2022)			\checkmark					\checkmark				
Ego4D (Grauman et al 2022)			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	

It's an exciting time for wearable devices & egocentric vision!

Hardware is increasingly available as big tech gests interested.



Large datasets and pre-defined challenges can help get started to explore the field

Francesco Ragusa

LIVE Group @ UNICT - https://iplab.dmi.unict.it/live/

Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

Portugal 26 - 28 February, 202 GRAPP HUCAPP IVAPP VISAP

- 1) Part I: History and motivations [14.15 15.45]
 - a) Agenda of the tutorial;
 - b) Perception and Egocentric Vision;
 - c) Seminal works in Egocentric Vision;
 - d) Differences between Third Person and First Person Vision;
 - e) First Person Vision datasets;
 - f) Wearable devices to acquire/process first person visual data;
 - g) Main research trends in First Person (Egocentric) Vision;
 - h) What's next?

Coffee Break [15.45 – 16.00]

Keynote presentation: Julien Pettrè [16.00 – 17.00]

- 2) Part II: Fundamental tasks for First Person Vision systems [17.15 18.30]
 - a) Localization;
 - b) Hand/Object Detection;
 - c) Action/Activity Recognition;
 - d) Human-Object Interaction;
 - e) Anticipation;
 - f) Industrial Applications;
 - g) Conclusion.